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Abstract—The effectiveness of Socially Assistive Robots (SAR)
relies on their ability to motivate particular user behaviours, e.g.
engagement with a task, requiring complex social interactions
tailored to the needs and motivations of the user. Professionals
from human-centred domains such as healthcare are experts
in such interactions, but their ability to contribute to SAR
development has traditionally been limited to the identification
of applications and key design requirements. In this work we
demonstrate how interactive machine learning offers a way for
such experts to be involved at every stage of design and automa-
tion of a robot, as well as the value of taking this approach. We
present a novel technical framework for in-situ, online interactive
machine learning that can be used in ecologically-valid human-
robot interactions. Using this framework, we were able generate
fully autonomous, appropriate and personalised robot behaviour
in a high-dimensional application of assistive robotics.

I. INTRODUCTION

Socially assistive robots (SARs) can be defined as robots
which provide assistance through social interaction along-
side or instead of physical aid [5]. Example applications
include exercise instruction and encouragement (for general
fitness/sports [18] and in various types of therapy [13][6]) as
well as weight loss coaching [[10] and other forms of positive
behaviour change (e.g. reducing energy consumption [S8]).
Domain experts in such human-centred professions (teaching,
healthcare etc.) actively effect social influence in the people
under their care (students, patients, etc.) through intelligent
use of social behaviours. For example, a study with therapists
undertaken to inform SAR design demonstrated how they
knowingly leverage their credibility and relationship with the
patient, as well as personalise their approach (with regards
to e.g. style of approach, use of feedback) in an attempt
to maximise compliance [19]. How to replicate this domain-
expert level of social intelligence on a robot, for autonomous
generation of such socially complex behaviour, is an open
research question crucial for the development and real-world
deployment of SARs.

Many previous works on automating social robot behaviour
have attempted to emulate lifelike behaviour by employing
models based on human or animal psychology (e.g. [12], [1]),
or through observing and then attempting to replicate human-
human interaction [18]. An alternative approach is to have
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a human teach the robot how to behave. This is typically
achieved using Learning from Demonstration methods in
which a human controls the robot to demonstrate the desired
behaviour, resulting in a training dataset to which machine
learning can then be applied offline (e.g. [ILL], [L7Z], [4]).
State of the art work has gone past this to utilise interactive
machine learning (IML) which allows the learning process to
occur in realtime, such that the robot can be used and trained
simultaneously. Such an approach was recently demonstrated
as a feasible method for generating autonomous, socially
assistive robot behaviour via the framework of Supervised
Progressively Autonomous Robot Control (SPARC) [16].

This work addresses two key interaction features not yet
considered in the previous application of SPARC: long-term
interaction and personalisation of robot behaviour, such that
the resultant system should be able to identify whar actions
to do, when and for who. As an exemplar longitudinal SAR
application, we consider the use of a robot exercise coach
to support the UK National Health Service (NHS) Couch to
Skm (C25K) programme. The programme consists of under-
taking 3x weekly exercise sessions for 9 weeks, with sessions
building up from a combination of short runs and walks to
a full 30 minutes running, typically delivered via podcasﬂ
The walk-run schedule of each session directly provides the
basic, functional instructions the robot, our ‘C25K coach’,
must deliver in order to guide users through the programme.
From an engagement point of view, the programme combines
a relatively boring task (walking/running on a treadmill with
no music/video entertainment) with the physical challenge of
gradually increasing running time/speed. This requires long-
term commitment and engagement from users, hence placing
great importance on the robot’s ability to provide task feedback
and encouragements in a socially intelligent, engaging and
supportive manner.

II. TECHNICAL APPROACH

We adopt the IML approach developed by Senft et al. [16],
as it was demonstrated to be adequate to efficiently learn

Uhttps://www.nhs.uk/live-well/exercise/get-running-with-couch-to-5k/



Fig. 1. Our C25K robot coach guiding a participant through an exercise
session, supervised by the fitness instructor who can initiate robot actions,
and respond to actions suggested by the machine learning system, through
the teaching interface.

a rich action policy (including both task-specific and task-
independent social support actions) from a high-dimensional
input space, in a relatively short period of time. Figure [2]
provides a simplified overview of the interaction flow under-
pinning this IML technique. Two main operational modes can
be distinguished: supervised operation, corresponding to the
training of the system (pictured), followed by autonomous
operation. During the supervised phase, the robot interacts
with the participant directly, but under the close supervision
of the expert. Initially, the robot does not have any action
policy, and the expert effectively teleoperates the robot by
providing action exemplars that are directly executed by the
robot, and simultaneously added to the training dataset. After
each example, the robot incrementally trains its own model, in
order to progressively learn its own action policy. Early on in
the process, the robot starts to generate action suggestions, that
are sent to the expert for validation. If accepted, these sugges-
tions are positively rewarded; if rejected, they are negatively
rewarded. Combined with the expert-initiated exemplars, this
helps the robot IML algorithm to quickly converge toward an
appropriate action policy. Once the expert is confident that the
robot’s suggestions are “good enough to be trusted”’, he/she
can ‘switch’ to the autonomous mode, in which the robot’s
suggestions are automatically accepted, without any human
intervention, resulting in a fully autonomous behaviour.

We propose that such an approach to automation can be
considered an extension of traditional participatory design
techniques [13]]. Typically, techniques such as focus groups,
interviews and prototyping are used to allow non-roboticist,
expert stakeholders to contribute to robot design, e.g. result-
ing in proposed use cases, design features and guidelines
(e.g. [O1, [19], [20). The automation of robot behaviour how-
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Fig. 2. Expert-in-the-loop machine learning: during the robot-participant
interaction, the expert teacher can either initiate suitable robot actions (expert
exemplars), or the robot itself can suggest actions, that are then validated by
the expert, resulting in {input space; action; reward} tuples which are added to
the training set of the robot’s learning algorithm. In our work specifically, the
expert’s action choice/validation is informed not only by real-time observation
of the participant (as per [16]) but also by their overall knowledge of that
participant (i.e. their needs/what works well for them) built up from getting
to know them pre-training and observing/interacting with them over multiple
sessions

ever, which requires a significant technical understanding of
robotics/artificial intelligence, is not typically considered dur-
ing such activities. The IML approach specifically addresses
this, allowing expert stakeholder(s) to be involved at every
stage of the design and development of the autonomous robot,
from the initial framing of the input and output spaces of the
robot, to the learning of an appropriate (autonomous) action
policy.

For our C25K coach, the exact role of robot, as well as
its action and input spaces, were co-designed with a domain
expert (a fitness instructor from the UWE Centre for Sport)
over 6 co-design sessions between the first author, fitness in-
structor and occasionally an additional member of the research
team. These sessions were conducted over a period of 5 weeks
and represent a total of 12.5 hours direct co-design work as
described in Table

A. Modelling the Robot Action Space

Conceptually, it was identified that SARs provide two key

action types:

1) Task Actions: those which provide direct task-specific
instructions to the user, e.g. when to transition between
walking and running in the C25K scenario.

2) Social Support Actions: those designed to facilitate and
encourage user engagement with the task (essentially
socially persuasive behaviours leveraging the social in-
fluence of the robot) e.g. providing feedback on task per-
formance, demonstrations of sympathy etc. Note these



Session (length)

Design Activities

1 (2 hours)

Interaction scenario was presented to fitness instructor for initial/un-biased recommendations, researcher then shared pre-prepared
suggestions based on previous work to brainstorm initial key actions/inputs

2 (2.5 hours) Visited gym that will be used for the study

Physical prototyping of the teaching interface tablet

Fitness instructor conducted mock Couch to Skm session with SL observed and filmed by KW

3 (2 hours) Took draft tablet teaching interface to the gym, fitness instructor put KW through mock session choosing actions via the tablet
interface and verbalising what he was doing/why (action choices were stored via the tablet interface and the instructor’s use of the
tablet was also video recorded)

KW and fitness instructor went through resulting video footage to further discuss what participant information may have been
informing his action choice

4 (2 hours) Went through the action space to discuss specific utterances/examples for each action

5 (1 hour) Dictionary of specific utterances worked on predominantly by the fitness instructor alone

6 (3 hours) Tested the experimental set-up with the fitness instructor trying out both the teaching and participant role

Made final practical study decisions e.g. fitness instructor placement during the running sessions etc.

TABLE I
KEY PARTICIPATORY/CO-DESIGN ACTIVITIES UNDERTAKEN BETWEEN THE RESEARCH TEAM AND DOMAIN EXPERT TO DEVELOP THE IML ROBOT
SET-UP INCLUDING THE NAIVE ROBOT ACTION SPACE, INPUT SPACE AND TEACHING INTERFACE.

might also include low level/non-verbal behaviours, e.g.
a change in proxemnis.

These actions can be additionally described and/or shaped
by an an overall mood or style. As such, both Task and Social
Support actions can be described by an {action-type, style-
modifier} pairing, as shown for our C25K coach in Table
For example, a {Run, Sympathetic} action might have the
robot say “Ok now I know you can do this, next is a run for 5
minutes” whereas a {Run, Challenge} action might have the
robot say “Right I want to see you push hard on this next
run for 5 minutes” and a {Social, Positive} pairing results in
a Humour action which might have the robot say “You can
call me Terminator because I'm going to make you run for
your life!”. Further, it was noted that style-modifiers could
also inform lower level, non-action specific robot behaviour
such as proxemics and non-verbal communication cues. For
our C25K coach, styles were used to set robot eye colour as
shown in Table [lIl A brief description of each robots action is
as follows:

o Time: encouragingly referring to the amount of time
remaining on the run/walk

e Social: a demonstration of ‘social support’/interaction
such as giving encouragement or telling a joke

o Performance: giving task-specific feedback to speed up,
down or stay the same

o Reward: praise the user for their effort/performance

o Check User: ask the user how they are feeling (with
user response submitted via icons displayed on the chest-
mounted touch screen tablet

o Animation: perform one of Pepper’s stock, positively
valenced, non-verbal animations (i.e. utilsiing sound,
movement and eye colour)

o Get Closer: Pepper ‘leans’ forward (chest tilts forward
from the waist)

o Back Off: Pepper ‘leans’ backward (chest tilts backward
from the waist)

o Run: introducing the length of the next run and counting
down into the transition

o Walk: introducing the length of the next walk and count-

ing down into the transition
e Eye Colour: change of eye colour

B. Interaction Features and Input Space

Four key interaction features were identified in considering
what input space might be required to inform a socially intel-
ligent action policy covering both Task and Social-Supporting
Actions:

1) Task State: describes non-performance related task in-
formation e.g. timing information, task state the user
should be undertaking (walking versus running).

2) Task Performance: describes if/how well the user is
performing the prescribed task.

3) Task Engagement: captures to what extent the user is
engaged with the prescribed task, recognising effort as
being distinct from performance.

4) User Personality: e.g. big five personality traits [7] and
other measures of attitude/motivation.

Full consideration of these categories requires an input
space that combines static data, that do not change over the
course of interaction, and dynamic data, that update during
the interaction. This is shown for our C25K coach in Table
Of particular interest are the Task Engagement measures,
which include both static and dynamic measures. Specifically,
these aim to capture an overall motivation with regards to the
task and longer term interaction scenario, as well as more
instantaneous, in-session engagement/effort.

C. Dual Learner System

The composition of actions as {action-type, style-modifier}
lends itself to a dual learning system, with the overall learner
actually containing a ‘style learner’ and ‘action-type learner’;
with each of these learners wrapping a classification algorithm
suitable for use in IML. The output of these can be com-
bined to generate actions, and the output of the style learner
specifically can additionally be applied directly to low level
behaviours as per Table [T



Social-Supporting Actions Task Actions | Low Level
Time | Social Performance | Reward | Check User | Animation | Get Closer | Back Off | Run | Walk | Eye Colour
P | Time | Humour Maintain Praise - Animation - - Run | Walk | Green
C | Time | Challenge Speed Up - - - - - Run | Walk | Yellow
S | Time | Challenge 1 o i Down | Praise | Check PRE | - - - Run | Walk | Blue
Sympathise
N | - - - - - - Get Closer Back Off | Run | Walk | White
TABLE II

FULL LISTING OF TASK AND SOCIAL-SUPPORTING ACTIONS FOR OUR C25K ROBOT COACH, ALL OF WHICH CAN BE DESCRIBED BY A {action-type,

style-madiﬁer} PAIRING, PLUS APPLICATION OF STYLE MODIFIERS TO E
BEHAVIOUR INDEPENDENT OF SPECIFIC ACTIONS. STYLE MODIFIERS:

YE COLOUR AS AN EXAMPLE OF USING STYLE TO MODIFY LOW LEVEL
P = POSITIVE; C = CHALLENGING; S = SYMPATHETIC; N = NEUTRAL.

Type Feature Values Description

(Dynamic) Task Action Type 0, 0.5, 1 | Whether participant is in warm-up, walk or run

Task State Session Progress 0-1 Time spent in session/session duration
Programme Progress 0-1 Time spent on programme/programme duration
Programme Action Progress 0-1 Time spent on current walk or run action/action duration
Programme Action Duration 0, 0.5, 1 | Current walk/run action length as < 3 mins, > 20 mins or other
Time Since Last Action 0-1 Time since last action/60; capped at 1

Dynamic Relative Speed: Average 0-1 Current speed/(2 x average speed)

Performance | Relative Speed: Best 0-1 Current speed/(2 x personal best speed)

Dynamic Heart Rate 0-1 Heart rate/2x resting heart rate capped at 1

Engagement | Motivation/Effort 0, 0.5, 1 | Self-reported measure in warmup/on check PRE action
Facial Expression: Lip Pull* 0-1 Normalised action unit returned by OpenFace
Facial Expression: Mouth Open* | 0-1 Normalised action unit returned by OpenFace

Static Elaboration level (self) 0-1 Normalised sum of 3 Likert questions (derived from [anon. ref])

Engagement | Elaboration level (expert) 0-1 as above but rated by fitness instructor
Activity Level 0-1 Likert question response

Static Extroversion 0-1 Big Five measure normalised with respect to max score

Personality Agreeableness 0-1 Big Five measure normalised with respect to max score
Conscientiousness 0-1 Big Five measure normalised with respect to max score
Emotional Stability 0-1 Big Five measure normalised with respect to max score
Openness to Experience 0-1 Big Five measure normalised with respect to max score

TABLE III

INPUT SPACE OF THE 20 STATE FEATURES IMPLEMENTED FOR THE DUAL LEARNING SYSTEM (BOTH STYLE AND ACTION CLASS LEARNERS UTILISED
THE SAME INPUT SPACE). THE FACIAL FEATURES MARKED * WERE LATER REMOVED DUE TO UNRELIABILITY DURING TESTING.

D. IML System Architecture

A simplified schematic of the system control architecture is
shown in Figure 3] All nodes communicate through the Robot
Operating System (ROS) [[14] with a number of custom, study-
specific ROS message types being implemented to describe
e.g. the different types of actions. Communication with/control
of the Pepper robot is done using NAOqi, Softbank’s multi-
platform operating syste All source code is open-source &
available online[]

1) Teacher Interface: The Teacher Interface (1) is used
by the fitness instructor to i) initiate robot actions directly
(providing expert exemplars as per Figure [2) and ii) respond
to learner suggestions (including the suggested styling of Task
Actions). Actions allowed to time-out at the interface, receiv-
ing no response from the fitness instructor within the given
timeframe, are considered passively accepted and allowed to
auto-execute. The teaching interface is coded in QML and runs
on a touch-screen tablet held by the teacher during exercise
sessions (shown in Figure [T)).

2cloc.aldebaran.com/2—5/index_dev_guide.html
3https://caidin.brl.ac.uk/k2-winkle/engagement_architecture

2) External Sensors: Dynamic task data requiring the use
of external sensors were addressed as follows:

Heart rate: captured via a polar H10 Bluetooth heart rate
sensoﬂ worn on the user’s chest. Raw output (in beats per
minute) was displayed on the teacher interface, but for learning
purposes was normalised with respect to user resting heart rate
(see Table |LLI])

Treadmill speed: read and automatically digitised from
treadmill display using a treadmill mounted camera. Raw
output (in miles per hour) was displayed on the teacher inter-
face, but for learning purposes was normalised with respect to
users’ average and personal best speeds, which were iteratively
updated during robot use.

User Perceived Rate of Exertion (PRE): users were asked
e.g. ‘How are you feeling’ by the robot, and asked to respond
via the robot-mounted tablet (described below).

Facial expression: real-time extraction of ‘lip pull’ and
’mouth open’ facial action units using OpenFace [3] via a
treadmill mounted camera. The robot’s camera was not utilised
due to the robot’s positioning.

An external tablet was used in place of the robot’s tablet to

4polar.com/uk—en/products/accessories/polar_h 10_heart_rate_sensor
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Fig. 3. A representation of the system architecture used for learning from the fitness instructor and ultimately generating autonomous robot behaviour in

guiding users through the C25K programme.

allow for direct connection to the ROS architecture. A simple
user interface was coded in QML, through which users could
trigger start of sessions by selecting their user icon, respond
to the robot’s Check PRE action (responding to e.g. ‘How
are you feeling’ by selection an appropriate good, ok, not
great response icon) and view subtitles of the robot’s speech
(published via ROS messages by the Behaviour Manager (5)
at the time of action execution).

Additionally, there are two key databases within the archi-
tecture. Firstly, the User Record contains both static (pre-hoc
collected data such as personality scores, activity level) and
dynamic (e.g. time spent on programme, average and personal
best speeds) user data. Secondly, the Programme Database
(within the Programme Manager) identifies the timing of
Task Actions for each exercise session according to the C25k
programme.

3) State Analyser: The State Analyser (3) collects data
from all input sources: external sensors, programme manager,
internal clock etc. in order to produce the 20-dimensional input
state used to describe the interaction (see Table [I[T). The state
analyser receives data from sources at whatever rate those
sources publish, but is set to publish specifically at 2Hz. This
also therefore represents the rate at which the Learner (5) is
passed new input states and asked to make suggestions.

4) Action Moderator: The Action Moderator (4) facilitates
the passing of actions between the fitness instructor, learner
and robot. This includes:

o receiving Task Actions from the programme manager and
applying the latest learner-suggested style before sending
to the teacher interface for validation

o publishing appropriate style and action training examples
to the Learner (5) based on actions initiated and/or
validated at the Teacher Interface (1)

« relaying Learner (5) suggestions to the Teacher Interface
(1) managing a priority queue based on action type and

limiting the rate of action suggestion

« relaying fitness instructor initiated/accepted learner-
suggested actions to the Behaviour Manager (6) manag-
ing a priority queue based on action type

5) Learner: The Learner is responsible for accepting train-
ing examples and generating suggested Styles and Social-
Support Actions. It wraps generalised machine learning algo-
rithm instances (one for style and one for action), interpreting
the input/output between them and the wider system. This
makes it easy to switch between different classification al-
gorithms. The Learner is event driven primarily by the receipt
of training examples and input states, demonstrated by the
example code excerpt presented in Algorithms [I] and 2] We
trialled two classification algorithms during testing - a multi-
layer perceptron and an adapted KNN algorithm (detailed
below); ultimately using the adapted KNN.

Receipt of a new state calls the prediction functions of the
style and action learning algorithm instances. The resulting
suggestions are then used to compose style and action sug-
gestions. Social-Supporting Action suggestions are composed
through combination of the style and action suggestions ac-
cording to the pairings in Table [} if such a pairing does
not exist, then no action is returned. The resultant output for
one action and two different styles is shown in the final code
excerpt presented in Algorithm [2}

Following [16]], on receipt of an expert-initiated/evaluated
action, a reward value is generated according to its validation
status (see Algorithm [I). Teacher-initiated actions and teacher-
accepted learner-suggestions are given a reward of 1. Pas-
sively accepted suggestions are given a reward of 0. Learner-
suggested actions that are refused by the expert are given
a reward of -1. The action-type or style is then enumerated
via a dictionary to create a {state-label-reward} tuple which
is added to the collection of instances representing classifier
training data. Use of these rewards in the context of making



suggestions is shown in Algorithm [3]

Algorithm 1 Processing of an action training example.

Input: Action e ({action, style}, state)

1: a = e.action
s = e.style
xr = e.state
if a.validation == EXPERT_INITIATED or ACCEPTED
then:
5: r=1
6: else if a.validation == PASSIVE_ACCEPTED then:
7: r=20
8
9

Bl

. else if a.validation == REFUSED then:
o or=-1
10: end if
11: ¢q = (a,x,1)
12: ¢s = (8,X,1)
13: actionclass_learner.add_instance(c,)
14: style_learner.add_instance(cs)

Algorithm 2 Example creation of a Social-Support Action
suggestion on receipt of a new input state.
Input: new state x:
suggested_style = style_learner.predict(x)
2: suggested_action = action_learner.predict(x)
if suggested_style | = NONE then
4:  create_update_style_action(style)
if suggested_action | = NONE then

6: if action == SOCIAL then
if style == POSITIVE then
8: suggested_action = [HUMOUR]
10: else if style == SYMPATHETIC then
action = random_choice[SYMPATHISE,
CHALLENGE]
12: suggested_action = [SYMPATHETIC, action]

6) Behaviour Manager: The behaviour manager turns vali-
dated actions into explicit robot commands and executes them
via the NAOqi ROS bridge. Dialogues to be used in speech-
based actions are stored in dictionaries for each {action, style}
combination. To identify which specific dialogue to execute
for a given action, the behaviour logs are checked to identify
which dialogue was used last time the current user saw this
action. The next listed dictionary entry is then selected, until
all dictionary listings have been exhausted in which case the
first dictionary entry is used and iteration through the dialogue
begins again.

III. EVALUATION

The robot was installed in a university gym which was
closed to the general public for the duration of the study. The
experimental setup is depicted in Figure[l] The fitness instruc-
tor involved in co-designing the action/input space was also

Algorithm 3 Adapted KNN algorithm logic for generating
suggestions; used for both style and specific action class
(shown here as applied to style suggestions). Note that the
threshold used to decide whether suggestions get proposed to
the supervisor is dynamically updated as new tuples are added
to the collection of instances (following [16]]).

Input: 2’ current state ; C's collection of style instances ¢, =
(s,x,r) S ensemble of styles present in Cg
Output: suggested style mg(x)
for all s € S do
for all p = (x,r) € Cs do
3: compute similarity A between x and ':
Alp) =1 - T @ (@) —x(i)?

n

6: find closest pair p = argmax,A(p)
compute expected reward 7(s) for applying s in state

9 7(s)=Ap)-r(p)
where r(p) is the reward r of the pair p = (x,r)

12: Select the style with the maximum expected reward:
ws(x') = argmaxst(s)

15: if #(mwg(a’)) > threshold then
propose mg(z') to supervisor

employed to be the system teacher and to observe/facilitate all
sessions. 10 participants (4 male/6 female, age range 26 to 60
with mean 36.2) were recruited to take part in the study, with
1 participant (female) dropping out midway through. They
were not compensated for their participation. The study was
approved by the UWE Research Ethics Committee.

A. Procedure & Testing Schedule

Over the course of the in-the-wild testing, participants
worked with the ML system and a heuristic based control.
In total, participants saw three versions of the robot coach:

1) ML-Supervised (ML-S): The ML system as con-
trolled/supervised by the fitness instructor, i.e. with him
generating unprompted actions and responding to system
generated action suggestions to generate training data.

2) ML-Autonomous (ML-A): The ML system allowed
to run autonomously, i.e. with no additional actions
generated nor suggested actions refused by the fitness
instructor.

3) Heuristic (H): A heuristic based system derived through
an iterative participatory design process with the fitness
instructor, and updated between Phases 1 and 3. This
was designed to represent a control condition to gener-
ate autonomous, expert-informed behaviour, to compare
our machine learning approach against. Note that the
Heuristic system utilised a smaller action space than the
IML system (as evidenced by Figures [ and [5). The



fitness instructor was simply unable to include certain
actions (e.g. humour, speed up) within the heuristics
because: i) no obvious, universal conditions for using
such actions could be identified and/or ii) such actions
were considered ‘risky’ by the fitness instructor; e.g.
telling a joke at the wrong time could severely negatively
impact on user experience and incorrect use of speed up
could be unsafe.

The experimental protocol was designed around delivery of
the C25K Programme. Exposure to the three versions of the
coach was split across three key testing phases. An example for
one participant, showing how each test phase related to specific
C25K sessions and robot conditions, is given in Table
Training data was collected during all ML-S training sessions
in Phases 1 and 2 of the study.

o Phase 1 [8 sessions per participant]: Participants alter-
nated between the ML-S and H robots each session, for
a total of 4 sessions with each. It was made explicitly
clear that the two robots were programmed differently
(each robot was colour coded either orange or purple) but
not it was not explained how they were different. Condi-
tion ordering and colour labelling were counterbalanced
across participants.

e Phase 2 [9-13 sessions per participant]: Participants
worked exclusively with the ML-S robot as it continued
to be trained by the fitness instructor. The robot was still
labelled and referred to as either the purple or orange
accordingly.

o Phase 3 [3+ sessions per participant]: Participants un-
knowingly worked out with ML-A robot for two sessions
before the H robot was explicitly re-introduced. Again,
to hide the difference between the IML and H systems,
participants were told that while they’d been working
with e.g. the purple robot the ‘other half of the group’
had been working with the orange robot, or vice versa,
and now they were once again being given another
opportunity to test and compare the two systems.

B. Technical Limitations

1) Facial Expression Input: As the study progressed and
participants were running faster, for longer, it became clear
that the facial expression tracking started to fail; likely due
to vibrations from the treadmill causing the camera image to
blur. As such, the two facial expression features listed in Table
were removed from the input vector and the learning agent
was re-trained based on all previous training data with those
two features removed.

2) Rate of Action Suggestion: As noted previously, suc-
cessful automation would require the learning system to iden-
tify what actions, when and for who. Preliminary testing of
autonomous behaviour produced by the system suggested a
failure to properly learn the when. Specifically the system
failed to learn that do nothing might sometimes be the ap-
propriate action. Dynamic updating of the policy suggestion
threshold failed to impact the rate of suggestions such that

suggestions were made every time the learner was passed an
input state. This resulted in action suggestions generally being
too frequent and/or repetitive.

A ‘safety limit’ constraining suggestion rate to 1 action
suggestion every 10s had already been coded within the Action
Moderator to prevent the teacher tablet being rushed with sug-
gestions, as experienced during early testing of the supervised
system. So, for Phase 3 of the study we increased this limit
to 30s. This matched the action rate of the heuristic system,
resulting from iterative testing with the fitness instructor, with
our motivation being that it would allow fairer testing of
participant experience of the action choices (the what and for
who) made by the learner compared to the heuristic control
system.

C. System Performance

In Phase 3 testing we successfully ran 2-4 fully autonomous
exercise sessions, i.e. with no fitness instructor and/or re-
searcher intervention, per participant. A full review of system
performance within the context of the use case, including
e.g. detailed analysis of participant experience, interactions
between the learner and the fitness instructor and specific
learning algorithm performance etc. is out of scope for this
article. However, we present preliminary results suggesting our
system successfully learned and automated the choice of what
actions for who; and produced more appropriate behaviour
than a heuristic based control.

The nature of our interaction scenario makes it difficult to
compare action distributions across conditions as a measure
of performance, as exercise sessions dynamic (participant
state, like energy level that day, and task requirements, e.g.
lots of short run/walks versus longer runs). As such, two
‘good’ sessions, where the robot acts appropriately, may have
very different action distributions. However, the distributions
in Figures [ and [5 provide insight into 1) how well the
system learned to replicate instructor behaviour and 2) the
personalised behaviour seen across different participants.

Figure [] shows that the distribution of actions produced
by the system when running autonomously (ML-A) was very
similar to that produced under supervision/control by the
fitness instructor (ML-S); demonstrating the robot successfully
learned an appropriate action policy that emulated that of
the fitness instructor. Figure [3] specifically shows the action
distribution for two participants that the fitness instructor
identified as needing different support strategies. It can be
seen that the ML-A robot behaved differently with each of
them; a Fisher’s exact test applied to these two distributions
demonstrates that they were indeed significantly different (p <
0.01). In contrast, for these particular participants, the heuristic
system produced almost identical action distributions.

D. PFarticipant Experience

Preliminary analysis of qualitative participant and domain
expert data further supports our conclusion that our system
successfully learned and automated the choice of what actions
for who; and produced more appropriate behaviour than a



Phase 1 Phase 2 Phase 3
S# 1 2 3 4 5 6 7 8 9 | | 22 23 24 25 26 27
Cdn | H| IML-S | H | IML-S | H | IML-S | H | IML-S IML-S IML-A | IML-A | H | IML-A | IML-A
TABLE IV

EXPERIMENTAL TESTING SCHEDULE FOR ONE OF THE PARTICIPANTS WHO COMPLETED ALL 27 COUCH TO 5KM SESSIONS. S# IS THE C25K SESSION
NUMBER, AND Cdn 1S THE ROBOT CONDITION.
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Fig. 4. Normalised action distribution across the Phase 3 heuristic, ML-A and
ML-S sessions across all participants. The similarity between the ML-A and
ML-S distributions shows to what extent the action policy of the autonomous
system replicated that of the fitness instructor. The heuristic system action
policy clearly differed greatly, even though it was produced through co-design
with the same fitness instructor.

Phase 3 H, ML-A and ML-S Action Distribution for Participants LB and MR
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Fig. 5. Normalised action distribution across the Phase 3 heuristic, ML-A
and ML-S sessions for two participants identified by the fitness instructor as
needing different approaches.

heuristic based control. For example, on the choice of what
action:

[User PT]: I think now [the ML robot] is more informed
and gives more accurate feedback (i.e.to slow down when I
am really tired)

[User FB]: After the initial sessions, I felt [the ML robot]
included more encouraging/supportive phrases and had a good
balance with the phrases designed to push you. They were also
well placed within the runs (often towards the end where you
might need more motivation).

[User JF]: [the ML robot] seemed like it got more helpful
in getting me to find a flow

Such comments suggest that the fitness instructor increas-
ingly tailored the robot’s behaviour based on his understand-
ing of what worked well for these participants as he got

to know them. This learning is reflected in notes he took
for himself through the programme, e.g. push her/keep her
interested, challenge further, starts off way too fast etc. and
the personalised action distributions discussed previously. This
represents exactly the kind of intuitive, domain expert social
intelligence which is ‘unlocked’ and captured into the robot
system specifically using this IML approach.

IV. CONCLUSION

In this article we present a socially assistive robot system
closely co-designed and then automated with a domain expert
using a state-of-the-art interactive machine learning approach.
Building on previous works using this approach to go beyond
state-of-the-art we:

o extended traditional participatory design techniques to
have a domain expert involved throughout design and
development of the system

« designed an action/input space that represents a complex
model of the social interaction space; considering person-
ality traits, subjective experience and a range of task and
engagement metrics - resulting in robot behaviours that
were personalised to each participant

« utilised a dual learning approach to split the classification
problem across robot action-types and styles

o tackled a real-world longitudinal interaction scenario in
which social support is crucial to engagement, success-
fully generating autonomous, personalised social robot
behaviour

We demonstrated the system in an 11-week longitudinal and
in-the-wild study, towards the end of which we successfully
ran 28 fully autonomous, robot-led exercise sessions across
9 participants. The robot demonstrated full functional and
social autonomy; i.e. providing both task specific instructions
as well as social supporting behaviours. On appropriateness
of these autonomous behaviours, initial results suggest our
system successfully learnt the what and for who but not did
not master the when. We suggest this is related to our choice
of learning algorithm (a simple extension to a KNN) and
our approach (or lack thereof) to encoding do nothing as
sometimes being an acceptable action policy. We will attempt
to address this in future work using data collected during the
study.
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