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ABSTRACT

Socially assistive robots primarily provide useful functionality through their social inter-
actions with user(s). An example application, used to ground work throughout this thesis,
is using a social robot to guide users through exercise sessions. Initial works have demon-

strated that interactions with a social robot can improve engagement with exercise, and that an
embodied social robot is more effective for this than the equivalent virtual avatar. However, many
questions remain regarding the design and automation of socially assistive robot behaviours for
this purpose. This thesis identifies and practically works through a number of these questions
in pursuit of one ultimate goal: the meaningful, real world deployment of a fully autonomous,
socially assistive robot.

The work takes an expert-informed approach, looking to learn from human experts in socially
assistive interactions and explore how their expert knowledge can be reflected in the design
and automation of social robot behaviours. It is taking this approach that leads to the notion of
socially assistive robots needing to be persuasive in order to be effective, but also identifies the
difficulty in automating such complex, socially intelligent behaviour. The ethical implications
of designing persuasive robot behaviours are also practically considered; with reference to a
published standard on ethical robot design.

The work culminates with use of a state of the art, interactive machine learning approach
to have an expert fitness instructor train a robot ‘fitness coach’, deployed in a university gym,
as it guides participants through an NHS exercise programme. After a total of 151 training
sessions across 10 participants, the robot successfully ran 32 sessions autonomously. The results
demonstrated that autonomous behaviour was generally comparable to that of the robot when
controlled/supervised by the fitness instructor, and that overall, the robot played an important
role in keeping participants motivated through the exercise programme.
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INTRODUCTION

Socially Assistive Robots (SARs) can be defined as robots which provide assistance through

social interaction alongside or instead of physical aid (Feil-Seifer & Matarić 2005). Typical

application domains for SARs include healthcare, wellbeing and education (e.g. Lara

et al. (2017), Sussenbach et al. (2014), Greczek et al. (2014), Shiomi et al. (2015)). Whilst

human-human interaction (HHI) is widely recognised as being critical in such domains, a lack of

resources typically limits the amount of time specialist practitioners can spend with individuals.

One particular example of such a resource intensive application is guiding and encouraging users

through therapeutic exercises. This is an often cited application of socially assistive robotics

(e.g. Malik et al. (2016), Swift-Spong et al. (2015), Wilk & Johnson (2014), Lara et al. (2017)). The

motivation for such an application can be summarised as follows:

(i) The success of therapy is related to the amount of exercise/practice the patient completes

(Pollock, Gray, Culham, Durward & Langhorne 2014, Pollock, Farmer, Brady, Langhorne,

Mead, Mehrholz & van Wijck 2014).

(ii) Low engagement with such exercises is a well-documented problem (O’Shea et al. 2007,

Forkan et al. 2006, Visser et al. 2014).

(iii) HHI has been shown to positively impact on exercise uptake and adherence in a range

of populations (O’Shea et al. 2007, Williams et al. 1991, Desroches et al. 2013, Jordan

et al. 2010, Karmali et al. 2014) but is increasingly difficult to provide due to a lack of

staff/resources.

(iv) Preliminary studies suggest social robots can potentially have a similar positive impact

on user engagement/motivation in such tasks (Swift-Spong et al. 2015, Wilk & Johnson
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2014, Gockley & Mataric 2006, Lara et al. 2017); specifically moreso than an equivalent,

screen-based avatar (Tapus et al. 2009).

One hypothesis to explain (iv) is that social robots go someway to emulating the equivalent

human presence described in (iii), which would suggest it is reasonable to look to HHI to inform

the design of effective SARs. Therapists, as experts in socially assistive interaction, are aware of

the effect their presence and interactions can have. Texts on the Therapeutic Relationship and

the Therapeutic Use of Self (Solman & Clouston 2016, Marilyn B. Cole MS & Valnere McLean MS

2003, Taylor et al. 2009) attempt to document best practice for using these effects to improve

patient engagement with prescribed regimes. However, it is difficult to extract robot design

guidelines directly from such works, predominantly because they:

(i) focus a lot on the role of the practitioner in the context of a meaningful relationship,

discussing very human capabilities and social phenomena such as seeking connection. It is

not clear exactly what role an equivalent robot can or should take, and if/how the robot can

or should attempt to effect this type of connection.

(ii) do not provide sufficient low-level detail on exactly what practitioners should do, and why,

that might inform the design of an equivalent robot input/action space and reasoning logic.

Again discussion assumes complex human capabilities regarding social and emotional

intelligence around e.g. rapport building.

As such, how to replicate this level of social intelligence on a robot, in the design and

autonomous generation of such socially complex behaviour, is a key technical challenge crucial

for the development and real world deployment of SARs. This work therefore aims to take an

expert-informed approach to tackling this problem, looking to understand what can be learned

from expert-led HHI, but also to the development and application of methodologies that allow

such experts to actively contribute to robot development.

The ultimate goal of the work then will be to demonstrate meaningful, real world deployment

of a fully autonomous SAR developed using this approach. Specifically, the focus will be on SARs

for exercise engagement as described above, with this use case being used to set the scope and

framing of the work, as further described under Section 1.3.

1.1 Related Work

Given the interdisciplinary nature of this work, each chapter details the most relevant related

literature, drawing from socially assistive robotics but also social HRI, HHI psychology and other

technical fields as appropriate. Here, an overview of related socially assistive robotics literature

is given in order to situate the overall thesis.
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Two early works in particular provide the initial motivation for improving exercise engage-

ment as an applications of SARs. Gockley & Mataric (2006) demonstrated that, in an exercise

based study, participants tended to do more exercise when they perceived a mobile robot to be

taking an interest in their behaviour. Secondly, in an 8-month study looking at encouraging

cognitive activities with individuals suffering from dementia, Tapus et al. (2009) demonstrated

that an embodied SAR led to a more efficient, natural, and preferred interaction compared to

the equivalent virtual agent on a computer screen. Together, these works suggested that a robot

could have an objective impact on user engagement with an exercise task, that this was likely a

social interaction/influence phenomena (linked to users’ perception of social intelligence on the

part of the robot) and that a physical robot rather than a virtual agent was likely to be more

effective for this use case.

Building on this, other works have investigated the impact of particular social behaviours in

SARs for exercise, with many pointing to the need for personalisation of SAR behaviour. This was

first suggested by Tapus & Mataric (2008), who discussed the link between personality, empathy,

physiological signals and task performance in the context of SARs. The authors pointed out that

no work on SARs to date had considered the role of user profile, personality or preference in

socially assistive HRI. In Tapus et al. (2008) the authors built on that notion by investigating

the impact of user-robot personality matching, manipulating robot proxemics, speed/amount of

movement and verbal communications to have the robot appear more introverted or extroverted.

The authors also attempted to use reinforcement learning to adjust these robot ‘personality’ cues

based on the users’ task performance. The results provide first evidence of user preference for

personality matching and the effectiveness of robot behaviour adaptation based on personality as

well as task performance.

More recently, Swift-Spong et al. (2015) investigated the effects of comparative feedback from

a SAR on self-efficacy in post-stroke rehabilitation. The results demonstrated that participants

receiving other-comparative feedback from the SAR (‘You had an average time that was s seconds

better than others with your ability level’) might be detrimental to user performance compared

to self-comparative (‘During the past few trials, you averaged a time of s seconds faster than

we would have predicted based on your prior performance’) or no comparative feedback. This

provides a clear example of how specific implementation of social HRI behaviours can objectively

impact on user performance, and hence why it’s important that they are carefully considered.

In another, very recent work, Fitter et al. (2020) again demonstrated the potential for SARs to

encourage engagement with exercise, and specifically demonstrated the value of physical touch

within related interactions, however their SAR implementation was not fully autonomous and

did not consider the personalisation effects highlighted by Tapus & Mataric (2008).

Very few works on SARs for exercise have specifically addressed the automation of these more

complex social interaction behaviours. Works on automation have instead typically focused on

the generation and monitoring of sessions rather than social interaction behaviours. For example,

3



CHAPTER 1. INTRODUCTION

González et al. (2015) presents a planning architecture for an autonomous, NAO robot based

system that can generate and take users through a custom therapy plan; monitoring sessions

and demonstrating movements. However, very little attention is paid to generation of complex

social robot behaviours, such as what encouragements to give and when. Similarly, Mead et al.

(2010) presents a SAR architecture for managing task oriented interactions and generating task

performance feedback, with no consideration of more general social behaviours. One more recent

work has focused specifically on the automatic recognition of exercises necessary for SARs to be

able to autonomously monitor user performance (Martinez-Martin & Cazorla 2019); whereas

another demonstrated a gait training system that could autonomously monitor task performance

but required teleoperation of the attached social robot companion (Leme et al. 2019).

An exception is Sussenbach et al. (2014) who implemented a motivational interaction model

specifically for the purposes of autonomously generating the right type of feedback (including

general, social encouragements as well as comments on task performance) to give under what

conditions. The model was implemented on a NAO robot used to guide users through indoor

cycling exercise. Whilst the system wasn’t designed with an expert, it was designed based on

ethnographic observations of a human fitness instructor, and so demonstrated the transfer

of social interaction patterns from expert-led HHI to HRI. Another exception is the recent

demonstration of a SAR whose ‘emotional state’ and subsequent behaviour dynamically updated

based on the emotional state of user during an exercise session (Shao et al. 2019). The SAR’s

emotional state was then expressed through the body language of the SAR and the choice of

vocabulary when ending the exercise session. Notably whilst this shaping of robot behaviour based

on user state was impressively both autonomous and dynamic with regards to (autonomously

assessed) user state, its generation was fixed; i.e. the same actions were always generated at the

same points of the interaction.

In short, no previous works appear to have realised an end-to-end autonomous SAR that is

able to provide effective, personalised, adaptive social and task-related feedback in the context

of encouraging exercise engagement. This is of course due, in part, to the sheer complexity

of generating such socially assistive interactions, whether in HRI or HHI. The initial work

by Tapus et al. (2008) leveraged both psychological models of personality types and real-time

reinforcement learning in order to inform personalisation of SAR behaviour and still concluded

that resultant behaviour could be made more socially intelligent. It is posited by this work that

using expert-informed approaches might offer something new in tackling this problem, a notion

given credibility by the work of Sussenbach et al. (2014) described above.

Whilst expert-informed approaches have been used in the context of acceptability studies

regarding SARs for exercise (e.g. Wilk & Johnson (2014), discussed in detail in Chapter 2) no

studies have yet looked to work with experts directly to understand exactly how they utilise

social interactions in order to improve engagement with their prescribed exercises. However, such

approaches have been demonstrated in other SAR applications, for example, Azenkot et al. (2016)
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and Lee et al. (2017) both demonstrated multi-session, participatory design processes in which

experts and end-users were invited to contribute to SAR design. This work looks to take a similar

approach, but also go further to consider methodologies that would also allow for expert input at

the automation stage of development.

1.1.1 Mutual Shaping

On investigating research practices in robotics, Sabanovic (2010) found that most roboticists

take a technologically deterministic view of the interaction between robotics and society. This

view suggests that society should accept and adapt to robotic technologies, whose social impact

is predominantly defined by their technological capabilities. However, studies in human-robot

interaction (HRI) have demonstrated that the impact of robots, when deployed in the real world,

is influenced by a number of social and societal factors beyond this. For example, use and

acceptance of a socially assistive robot, designed for health promotion to older adults, was found

to be influenced by a diverse range of factors beyond just its practical functionality (de Graaf

et al. 2015). These included factors related to the context of use (e.g. social influence, privacy)

and user characteristics (e.g. age, type of household). This example demonstrates the impact of

real world situational factors on use of the robot; however use of the robot can also influence and

change such factors in return.

As another example, the PARO robot is primarily designed to reduce stress akin to animal

therapy1. Chang & Šabanović (2015) undertook long term observations of PARO being used in a

care home, using a social shaping framework to understand social factors that affected its use.

Similar to the previous study, they found that use of the robot was influenced by situational

factors such as the users’ gender, and that robot use was often prompted by another social actor

(e.g. fellow resident, staff or visitor). In addition however, they also noted that use of the robot

influenced staff approaches to care. For example a carer might move certain patients towards

PARO when they would normally be guided elsewhere, or use PARO as a focal point during

rehabilitation therapy sessions. This shaping of robot use by the social context and shaping of

the use context by robot deployment is evidence of mutual shaping on robot deployment.

However, mutual shaping is not limited to use of a robot on deployment. Sabanovic (2010)

proposed the framework of mutual shaping for social robot design, with a focus on the dynamic

interaction between robotics and society at all stages of design, development and evaluation.

She proposed that one way to achieve this was to encourage user and stakeholder participation

throughout the design and development process; representing a mutual shaping approach to

robot design. This work looks to employ a mutual shaping approach throughout, specifically by:

1. encouraging stakeholder participation throughout design, development, automation and

evaluation (employing participatory methodologies wherever appropriate)

1http://parorobots.com/
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2. considering the proposed SAR/SAR behaviours within its overall context of use and the

societal factors that may therefore affect/be affected by its deployment

3. considering mutual shaping effects surrounding the real world deployment and use of SARs

in-the-wild.

1.2 Research Questions

The overall goal of this thesis is to demonstrate meaningful, real world deployment of a fully

autonomous, socially assistive robot, using expert-informed methodologies and a mutual shaping

approach to design and development. It is posited that in doing so, the work will demonstrate that

such an approach is vital for the successful deployment of SARs, whilst also making generalisable

contributions to state of the art in socially assistive robotics and social human-robot interaction

(HRI). Achieving this goal requires significant, interdisciplinary research work tackling a range

of more specific research questions. These research questions are presented and addressed within

each chapter. Overall however, in tackling this goal, the broader research questions addressed by

the work are as follows:

RQ1 How can human, domain expert knowledge, particularly regarding intuitive and experience-

based social/emotional skills, be captured and utilised in the design and automation of a

SAR?

RQ2 Does application of expert-informed and mutual shaping approaches result in SAR be-

haviours that are successfully able to improve user engagement with a task/programme?

Where success considers multiple contributory factors e.g. acceptability?

RQ3 Considering a SAR within its broader context of use, what is the role of the human (i)

designers/programmers behind its design/development and (ii) expert practitioners working

with the robot ‘in-the-wild’?

1.3 Scope

Tackling such an ambitious goal requires a number of open research questions to be addressed.

Also in order to make it achievable, a set of carefully considered constraints, limitations and

assumptions need to be applied.

A huge range of robot designs and applications could fit under the very broad definition of a

SAR, just as the nature of socially assistive HHI varies. This work will therefore focus on one

specific application of a SAR, the previously cited example of guiding and encouraging users

through a set of prescribed exercises. Specifically, the aim will be to target improved engagement

with the kind of monotonous, repetitive exercise programmes that typically suffer from a lack of
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adherence. This application represents a realistic, exemplar use case which allows this work to

be grounded in a tangible context of use whilst also generating insights relevant to other SAR

applications.

Even limited to this one application, there are a number of ways a robot might be designed

to achieve the desired effect. As described under Section 5.1.2, early work on this topic demon-

strated that a very non-humanoid and arguably low-sociability robot (a Pioneer mobile robot

platform2) might be able to influence instantaneous task engagement (Gockley & Mataric 2006).

A more recent work had the same aim, but used the much higher fidelity, humanoid NAO robot3

(Sussenbach et al. 2014).

For this work, a single existing robot platform will be used throughout, such that work

will be centered on the design, testing and automation of behaviours for this platform. Whilst

the overarching aim is to have experts inform decisions on exactly what role and functionality

the SAR should take, the choice of platform will have a significant impact on this. Interaction

modalities will obviously be somewhat limited based on the robot’s hardware, but its particular

embodiment is also likely to generate particular expectations around what functionalities the

robot should have/role it should take. This will be recognised and managed as a limitation in the

work (e.g. by introducing expert participants to other example platforms) but further study of

this potential impact of robot embodiment is out of scope for this work.

1.3.1 Choice of Robot

Of existing, commercially available robot platforms, the Pepper robot4 was identified as being

most appropriate option for the proposed use case (encouraging adults to exercise) on the following

basis:

1. The size of Pepper is more appropriate for interacting with adults than smaller robots (e.g.

NAO).

2. The tablet mounted on Pepper’s chest can be used to present exercise instructions, video

demonstrations etc.

3. Pepper’s CE marking5 makes it easier to safely deploy the robot in-the-wild, outside of the

research environment.

1.3.2 Framing

Making detailed design choices regarding the SAR role and functionalities forms a significant

part of the work to be actively done with experts. However, the identified use case, choice of robot

2https://www.generationrobots.com/media/Pioneer3DX-P3DX-RevA.pdf
3https://www.softbankrobotics.com/emea/en/nao
4https://www.ald.softbankrobotics.com/en/robots/pepper
5https://www.softbankrobotics.com/emea/sites/default/files/inline-files/declaration-of-conformity-pepper-1.8.pdf
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platform and overall research philosophy provide a starting point for the framing the type of SAR

that is to be developed and the resulting research questions that are most of interest.

Firstly, the ultimate purpose for any developed SAR would never be about replacing HHI.

Rather, the purpose should be to offer additional social interaction(s) and/or assist with that HHI

in some way (e.g. by freeing up limited practitioner time for more valuable activities). As such

the robot should be seen as ‘filling gaps’ in between interactions with human practitioners, and

should be considered as either a tool of/team member to those practitioners.

Secondly, based on the use case, the basic functionality of the SAR is expected to include

being able to initiate, instruct and encourage users through a prescribed set of exercises. This

represents an example of using a SAR to prompt or encourage particular user behaviours, as can

be seen in other specific SAR applications (e.g. prompting children to engage in learning activities

(Shiomi et al. 2015)). Clearly, to do this, the SAR will need to have some recognition of users’

performance at the prescribed exercise(s). However, detailed kinematic analysis and evaluation

of said exercises are out of scope for this work. Technical implementation of such analysis would

ultimately be required for full realisation of the SARs considered in this work, and must further

be of high accuracy in order to be useful. Such analysis is being worked on e.g. in the context of

sports analysis6 and weight training applications7. In fact, works on SAR automation to date

have typically focused more on automating this type of analysis, for monitoring user performance,

than on the autonomous generation of appropriate social behaviour (see e.g. Martinez-Martin &

Cazorla (2019) discussed under Section 5.1.2). It is therefore assumed that such analysis could

be implemented for the applications/studies presented in this work, but that this would require

significant engineering effort and is less relevant to this work’s focus on designing, automating

and evaluating social interaction for SARs.

Finally, this proposed functionality regarding the delivery of functional/task instructions, and

the target population being adult users, means the robot is likely to take on a fairly authoritative

role with regards to delivering the prescribed exercise programme. This contrasts with, for

example, having the user represent the authority with the robot then being somehow reliant on

their engagement (as demonstrated e.g. in the case of having children improve their handwriting

by teaching a robot how to improve its handwriting (Lemaignan et al. 2016). This would also

be an example of a SAR prompting engagement with a desirable behaviour through its social

interactions with the user. As such, it must be recognised that the interaction behaviours

developed and studies in this work represent only one role a SAR might take in attempting to

influence user behaviour.

6Kinovea is open source video player for sports analysis that can be used to identify kinematics of movement:
https://www.kinovea.org/

7 ‘Personal Trainer - Kaia’ App uses motion tracking on camera feed to offer e.g. squat technique corrections:
https://apps.apple.com/us/app/kaia-perfect-squat-challenge/id1393680040
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1.4 Research Philosophy

The research philosophy driving the approaches taken and research questions explored in this

work is as much practical as it is responsible. In the authors’ mind, the approaches taken

and questions asked are necessary, from an engineering perspective, in order to build the best

technical system that is also going to be acceptable to stakeholders and therefore useful in the

real world.

For example, concerning the focus on expert-approaches, it seems obvious that any technical

development targeting human-centred domains such as healthcare and education ought to look

to capitalise on the wealth of practitioners’ domain expertise. Healthcare workers, teachers and

learning support staff, personal trainers etc. are all experts in the type of social intelligence that

HRI researchers are attempting to replicate, at least to some extent, in social robots. However,

it also seems right for such stakeholders to be included as much as possible during SAR design

and development, as well as for such development to consider how use of SARs will impact

on standard practice within these domains. Attempts to foster and understand this two-way

interaction between domain experts and HRI research can be described as a mutual shaping

approach (Sabanovic 2010) which is gaining traction (but still not the standard) within robotics

research more broadly.

Given that SARs are typically designed to be used in socially complex applications, there

are many stakeholders who may affect or be affected by their use on deployment. This could

include teachers, parents, siblings, friends and classmates in the context of education, or carers,

healthcare professionals, family and friends in the context of care; all representing stakeholders

beyond the immediate user of the robot. Similarly the robot is likely to form part of a larger

strategy or intervention, e.g. fitting in with a larger programme of study or forming one part

of a care delivery plan. Mutual shaping effects are inevitable in such scenarios. Considered

holistically they can represent an opportunity for making the best possible use of available

technology. In contrast, failure to consider all stakeholders’ views could lead to unpredicted

negative consequences on real world deployment. Therefore, it is a key tenet of this thesis that

taking a mutual shaping approach is not only responsible, but also necessary for success. Given

that this approach is not yet the norm, posthoc critique of its implementation represents an

additional contribution of this work, and is thus discussed in detail in Chapter 5.

More broadly, efforts are taken to pursue a responsible innovation approach8 throughout

the work. This is reflected e.g. in the consideration of a recent standard for ethical robot design

in Chapter 3, but also the extensive use of qualitative data collection methods alongside the

more typically used categorical or Likert scale questionnaires. Such methods allow participants’

greater freedom in contributing to the work, but are also demonstrated to be vital in generating

deeper understanding regarding answers to/behaviour on those other measures.

8https://epsrc.ukri.org/research/ourportfolio/themes/healthcaretechnologies/strategy/toolkit/home/integrity/ri/
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1.5 Structure

The chapters in this thesis essentially represent incremental, but somewhat discreet work

packages undertaken in pursuing the overall goal of this doctoral research project. As such, each

individual chapter introduces and addresses its own set of specific research questions/hypotheses.

Similarly, a review of the most relevant literature is given within the introduction to each chapter.

The broad research questions set out in this chapter are then addressed, by drawing together

results and findings from across these chapters, in the Conclusion. A summary of each chapter is

given below.

Ch. 1 This chapter introduced the ultimate goal of this doctoral research work: the expert-

informed design and automation of SAR, meaningfully deployed in the real world. The

scope of the work was also set out, identifying the specific SAR application and framing the

kind of interactions to be considered, as well as some constraints and limitations applied in

order to make this goal achievable.

Ch. 2 Chapter 2 presents an in-depth, qualitative study with therapists, as experts in socially

assistive interactions, designed to understand the role of social interaction in encouraging

compliance with a prescribed exercise programme. Results from five focus groups and eight

interviews (with a total of 21 therapists) are collated to produce a set of (generalised) design

guidelines for socially assistive HRI.

Ch. 3 Chapter 3 identifies a model of persuasion from the HHI literature that appears to align well

with results from the study with therapists in Chapter 2. A study is presented to investigate

the efficacy and acceptability of SAR behaviours designed using this model. Results support

this application of the model with two of the three of the tested persuasive strategies leading

to participants undertaking significantly more repetitions of an open-ended exercise. It is

highlighted that these behaviours may be ethically hazardous, according to a published

standard on ethical robot design, and so a further two studies consider the potential impact

of re-designing these behaviours to better conform to the standard. Resultant, practical

design implications for SARs and social HRI more generally are also presented alongside

the potential ethical considerations which ought to be made on their implementation.

Ch. 4 Chapter 4 presents the technical implementation and real world experimental deployment

of a SAR which utilises a state-of-the-art interactive machine learning (IML) system to

achieve automation. This work builds on all of the design guidelines and results generated

from the earlier chapters, but specifically addresses automation of a SAR, successfully

meeting the ultimate goal of this project as set out in this chapter. Specifically, a naive ‘robot

coach’ for delivering the UK National Health Service (NHS) Couch to 5km programme is

co-designed and developed with a domain expert (fitness instructor) who then teaches the
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robot how to behave in-the-wild. The robot was deployed for 11 weeks, and successfully ran

2+ autonomous sessions for each of the 9 participants by the end of the study.

Ch. 5 Chapter 5 reflects on (i) the mutual shaping approach taken and (ii) examples of mutual

shaping observed throughout. Two generalisable methodologies for how to take a mutual

shaping approach (based on the focus group methodology used in the study with therapists

of Chapter 2 and the co-design IML approach to automation demonstrated in Chapter 5)

are presented alongside results demonstrating why this is worthwhile.

Ch. 6 Chapter 6 first provides a summary of the work in each chapter and how the chapters

relate to each other. The research questions presented here are then returned to and

addressed by bringing together key findings from across all of the chapters. A note on

ethical considerations arising from the work is given, as well as a statement regarding

limitations and future work, followed by a concluding summary and list of resulting

contributions.
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A STUDY WITH EXPERTS IN SOCIALLY ASSISTIVE INTERACTION

Therapists are experts in socially assistive interaction, actively building relationships with

service users in order to encourage compliance with/engagement in therapeutic exercises.

This chapter presents a study with therapists, designed to investigate exactly how they do

so, in order to inform socially assistive robot design. The results highlight the importance of social

influence, which therapists knowingly cultivate and leverage in order to have impact. Generalised

design implications derived from the results are presented for application to a range of socially

assistive robot scenarios. The work in this chapter is described in the following publication, which

received Best Paper Award:

Winkle, K., Caleb-Solly, P., Turton, A. and Bremner, P., 2018, February. Social robots for engage-

ment in rehabilitative therapies: Design implications from a study with therapists. In Proceedings

of the 2018 ACM/IEEE International Conference on Human-Robot Interaction (pp. 289-297).

2.1 Introduction

In conventional therapy and exercise-related psychology literature, human-human interaction has

been shown to positively impact on exercise uptake and adherence in a range of populations (e.g.

O’Shea et al. (2007), Williams et al. (1991), Desroches et al. (2013), Jordan et al. (2010), Karmali

et al. (2014)). However, it is increasingly difficult for health practitioners to provide large amounts

of dedicated one-to-one support due to a lack of staff/resources. Preliminary studies suggest

social robots can potentially have a similar positive impact on user engagement/motivation

in therapeutic exercise tasks (e.g. Swift-Spong et al. (2015), Wilk & Johnson (2014), Gockley

& Mataric (2006), Lara et al. (2017)); specifically more so than an equivalent, screen-based

avatar (Tapus et al. 2009). One hypothesis to explain this phenomenon, is that social robots go
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someway to emulating the equivalent human presence described in (iii), which would suggest it

is reasonable to look to human-human interaction to inform the design of effective SARs.

Therapists, as domain experts in socially assistive interaction, are certainly aware of the

effect their presence and interactions can have, and have attempted to document best practice

for its use in improving engagement (c.f. The Therapeutic Relationship, the Therapeutic Use of

Self as described in Solman & Clouston (2016), Marilyn B. Cole MS & Valnere McLean MS

(2003), Taylor et al. (2009)). However, it is difficult to extract robot design guidelines directly

from such works (which were not undertaken with the explicit aim of informing robot/technology

design), predominantly for two key reasons. Firstly (i) such works often focus a lot on the role of

the practitioner in the context of a meaningful relationship (Solman & Clouston 2016) discussing

very human capabilities and social phenomena such as seeking connection. It is not clear exactly

what role an equivalent robot can/should take, and if/how the robot can/should attempt to affect

this type of connection. Secondly (ii) such works do not tend to provide the kind of explicit details

on what practitioners should do and why that might be used to inform e.g. the design of robot

actions or control heuristics.

This chapter primarily addresses (ii) using results from a study with therapists, as experts

in social influence in a socially assistive domain, to improve understanding of socially assistive

human-human interaction and inform SAR design. Item (i) is also somewhat addressed here

with regards to what functionality a SAR might provide, but the potential for impacting on

the therapist-client relationship and other considerations regarding real world deployment are

discussed in the context of mutual shaping in Chapter 5. Key contributions from this work are as

follows:

1. First study to take an expert-informed/user-centred approach to informing the design of

SARs for therapy

2. Detailed consideration of how therapists use socially assistive human-human interaction

to tackle service user compliance and engagement

3. Resultant design implications for socially assistive human-robot interaction

In designing this study, a novel focus group methodology was developed in order to support the

overall mutual shaping approach employed throughout this research. Details of this methodology,

how it compares to other participatory and user-centred design methods, and additional results

and contributions demonstrating exactly how it supports this approach, are given in Chapter 5.

2.1.1 Related Work

Kang et al. (2005) undertook one of the first feasibility studies on SARs for engagement in therapy,

demonstrating their potential by demonstrating a hands-off robot for encouraging breathing

exercises in a hospital setting. Gockley & Mataric (2006) then demonstrated that even a very
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simple, non-humanoid mobile might have an impact on compliance with stroke rehabilitation

exercises. Importantly, they found that this impact appeared to correlate with participants’

perception that the robot was somehow ‘interested in’ or responding to their exercise behaviour.

This was further developed by Tapus & Mataric (2008) who provided initial evidence that SARs

which appear to match the user in terms of extroversion/introversion might be more effective

in encouraging stroke rehabilitation exercises. A more recent study considering what types

of feedback SARs might give again demonstrated the utility of SARs in rehabilitation, with

participants showing improved task performance gained by working with the robot (Swift-Spong

et al. 2015).

Whilst these studies demonstrate the potential for SARs in therapy, they are primarily

concerned with testing feasibility and quantifiable impact rather than exploring use cases,

generating design recommendations or informing robot behaviour design. Studies designed to

measure user acceptance have also typically been focused on evaluation of a complete/final

system. For example, in the most closely related work considering SARs for rehabilitation, Wilk

& Johnson (2014) utilised a robot demonstration in investigating the potential for a combined

telepresence/SAR system to facilitate and encouraging engagement with stroke therapy. Residents

and caregivers from a daycare centre were given a demonstration of the robot’s capabilities. Then,

they were asked to complete a survey measuring perception and acceptability of the robot system.

The authors note that caregivers also discussed additional capabilities the robot could have, but

no detail is given as to the format or formality of these discussions.

Considering SARs more generally, research on robots for the care of older adults has typically

employed user-centered design methods to elicit user views or assess user needs for informing

design requirements (e.g. Louie et al. (2014), Wu et al. (2012), Beer et al. (2012)); but none of these

works have attempted to actually understand practitioner behaviour for informing robot design.

Instead, previous attempts to design social robots and other assistive technologies for engagement

and motivation have typically utilised theoretical models from psychology (e.g. behaviour change

theory (de Vries et al. 2017)), ethnographic observations of human interactions (Sussenbach et al.

2014) or machine learning (e.g. Chan & Nejat (2012), Leite et al. (2011)).

Outside of robotics, Singh et al. (2014) undertook a number of studies with people with chronic

pain and specialist physiotherapists to identify opportunities for interactive technological devices

to aid in motivation. Their aim was to consider such opportunities from two perspectives, the

practical needs of those suffering chronic pain and the expert behaviour of physiotherapists in

supporting them, with the latter being particularly relevant to this study. The authors used role-

plays, focus groups, interviews and observations to explore physiotherapist behaviour, identifying

key behaviours around the use of positive feedback, promoting self-esteem, using prompts to

direct users’ attention and careful choice of language. They noted that the type, and quantity of

feedback provided by physiotherapists is based on the psychological state of the patient and on

where s/he is in the context of their confidence with exercising. Further they noted the potential
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for clinician and patient perspectives to raise potentially contradictory issues that all must be

considered for any resulting technology to be effective. This provides one motivation for limiting

the work here to a study with therapists (rather than patients) in the first instance.

2.1.2 Research Questions

Whilst this study is grounded in the SAR application of supporting therapy engagement, the aim

is to provide insight that can be applied to a range of SAR use cases. As such, the overall research

questions tackled by ths study can be generalised as follows:

RQ1 How could SARs be useful in an assistive scenario, according to domain experts?

RQ2 How can user engagement with a long-term, assistive activity be measured?

RQ3 What is the role of the domain expert in influencing user engagement with the desired

task/activity?

RQ4 How might SAR behaviours be tailored to individual users?

The novel focus group methodology employed in the first part of this study, designed to

facilitate a mutual shaping approach, also generated valuable insight regarding mutual shaping

effects that ought to be considered for real world robot deployment of SARs in therapy. This is

discussed further, alongside full presentation of the focus group methodology, in Chapter 5.

2.2 Materials and Methods

5 focus groups and 8 interviews were undertaken with therapists from a range of disciplines

(occupational therapy, physiotherapy, sports rehabilitation therapy and speech & language

therapy) as listed in Table 2.1 (total pool N = 21, 3 male & 18 female, average age 40). Note

that all interview participants apart from SL4 also took part in a focus group. Therapists were

recruited by email communications to local hospitals, private practices, through advertising to

university staff and through communications to contacts of the research team. Demographic

information collected included time since qualified, time spent practising since qualified and

typical service areas/users worked with. All focus groups and interviews were carried out at

the Bristol Robotics Laboratory. The study was approved by the ethics committee of the Faculty

of Environment and Technology of the University of the West of England (UWE REC REF No:

FET.17.02.022).

2.2.1 Focus Groups

A novel focus group methodology was designed to facilitate mutual learning as part of the mutual

shaping approach taken to all work presented in this thesis. This methodology is presented in
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Study Participants
Focus 8 Physiotherapists (P1 - P8)
Groups 7 Occupational Therapists (OT1 - OT7)
(N = 20) 3 Speech and Language Therapists (SL1 - SL3)

2 Sports Rehabilitation Therapists (SR1, SR2)
Interviews 3 Physiotherapists (P1, P2, P6)
(N=8) 2 Occupational Therapists (OT1, OT6)

3 Speech and Language Therapists (SL1, SL2, SL3)

Table 2.1: Study with experts complete participant list.

Focus Group Participants Duration
1 OT1, OT2, OT3 81 minutes
2 SR1, P1, OT4, SL1 74 minutes
3 P2, P3, P4, P5 57 minutes
4 SL2, OT5, P6 76 minutes
5 SL3, P7, SR2, OT6, OT7 104 minutes

Table 2.2: Focus group participant groupings. OT = occupational therapist, P = physiotherapist,
SL = speech and language therapist, SR = sports rehabilitation therapist.

full, and generalised for application to other scenarios, in Chapter 5. For this study, focus group

sessions consisted of discussions, a group activity, and a project talk with demonstrations using

the robot Pepper1, lasting between approximately 60 and 100 minutes. However, as discussed

further below, focus groups participants were made aware of other social robots as it was made

explicitly clear that Pepper represented just one specific design/implementation of a social robot.

The ordering of these elements and key topics covered at each stage is shown in Table 2.3 and

detailed below. The full topic guide is provided in Appendix A. Figure 3.2 shows the room layout

employed for each session. Participants were randomly allocated to one of the sessions based on

availability; group participant lists are given in Table 2.2.

Pre-Focus Group Questionnaire

A set of questions to measure acceptance of social robots in therapy were designed based

on the Unified Theory of Acceptance and Use of Technology (UTAUT) (Venkatesh et al. 2003).

A copy of the pre-focus group questionnaire is provided in Appendix A. The pre-focus group

questionnaire was completed directly before the focus group began. The questionnaire asked

participants to indicate their agreement with the following statements via a 5-point Likert scale

(strongly disagree to strongly agree):

1. I feel apprehensive about the use of social robots in therapy

2. Social robots are somewhat intimidating to me

1https://www.ald.softbankrobotics.com/en/robots/pepper
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Figure 2.1: Room layout during focus groups; note the presentation screen position on which a
collage of different social robot images was displayed during discussions.

Section Key Topics/Activities
Before Discussion Acceptance questionnaire
Discussion Part 1 Use of social robots in therapy

Conventional therapy delivery
Group activity on factors affecting adherence

Project Talk & Robot Demo Study motivations
Supporting literature
Project aims & objectives
2x Pepper assistance scenario demonstrations

Discussion Part 2 Revisit use of social robots in therapy
Useful data collection

After Discussion Extended acceptance questionnaire

Table 2.3: Focus group schedule showing order of activities and related topics. Note that the
discussion is broken into two halves; pre and post the project talk and robot demonstrations.
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3. I think social robots might be somewhat intimidating to service users

4. I think using social robots in therapy is a good idea

5. I think using social robots would make therapy more engaging for the service user

6. A social robot would be useful in supporting a therapy programme

7. I think that use of a social robot could improve the positive outcomes/success of a therapy

programme

Additionally a semantic difference question asked participants whether a social robot would

be most useful when they were working with the user or when the user was working at home

alone. It was hypothesised that few participants would be familiar with the concept of social

robots before participating in the focus group, potentially reducing the validity of questionnaire

responses. To address this, the pre-session questionnaire was attached to the following definition

of social robots (based on Fong et al. (2003)):

Social robots are those that can take part in social interactions with humans. They might

exhibit human-social characteristics such as expressing and perceiving emotions, making conver-

sation, establishing/maintaining social relationships, using natural cues (e.g. gaze, gesturing) and

exhibiting a personality/character. Social robots might be humanoid/resemble some human char-

acteristics but this is not always the case. A range of social robots are shown below to demonstrate

this.

Alongside this description was a collage of images showing 5 different social robots (Pepper,

Buddy2, MiRo3, Kismet4 and Nao 5).

Pre-Demonstration Discussion

The pre-demonstration topic guide was designed to elicit participants’ initial (relatively

uninformed) ideas on the use of SARs in therapy. This covered ways in which SARs could be

useful and more generally participants’ feelings, attitudes and/or concerns about their use, and

was included to collect participants unbiased opinions. Specifically, participants were asked

• What do you think about using robots to support a therapy program?

• How do you think that robots might be able to do that?.

2http://www.bluefrogrobotics.com/en/home/
3http://consequentialrobotics.com/miro/
4http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
5https://www.ald.softbankrobotics.com/en/robots/nao
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During these discussions a collage of images of 10 different robots (Pepper, Buddy, Kismet,

Miro and Nao as previous, plus Bandit6, Molly7, Jibo8, Paro9, iCat10 and Pioneer11 (as used in

Gockley and Mataric’s related work as a ‘social’ robot Gockley & Mataric (2006)) was displayed

on the presentation screen. This is shown in Figure 3.2. Pepper was positioned alongside the

moderator. Participants were able to ask questions concerning SARs, associated technologies or

more about the project throughout the focus group. Pepper was positioned and set-up ahead of

participants entering the focus group room; left visible and in its standard ‘Autonomous Life’

mode. This includes a ‘breathing’ motion and the redirecting of gaze and body position based on

visual human tracking. Audio input and output were disabled however; such that the robot was

not speaking nor reacting to speech or sounds. The collage of social robot images was referred to

by as appropriate during discussions, e.g. when faced with questions concerning physical design

or to probe discussion points around capabilities and applications or participant reactions to

Pepper.

This part of the discussion was also used to explore related conventional elements of therapy

as they are done now; similar to the approach taken by Lee et al. (2017). This focused on the

importance and implementation of self-practice exercises at home, e.g. therapist prescription,

user reporting and therapist monitoring of such exercises. Participants were also asked about

their role in motivating or encouraging service users and how they might do that. Following this,

participants were asked to complete a group activity ranking different factors which may affect

user engagement. Participants were presented with a list of possible factors identified from the

therapy literature, but also given blank cards to complete with any factors they additionally

identified. An example result from this exercise is given in Figure 2.2. As well as generating data,

this part of the discussion also established the focus group participants as ‘experts’. Qualitative

research guidelines (Curry 2015) suggest that expert establishment in focus groups is key to

encouraging participation. Participants then feel confident that they can offer useful, valid contri-

butions and are therefore less hesitant to take part. All participants worked with self-practice of

some form, and found ‘common ground’ on the need to motivate service users. This helped to set

all participants equal and create rapport; again important for maximum participation.

Project Presentation & Robot Demonstrations

A key aim of the study was to achieve mutual learning between the researchers and the

participants; as described by Lee et al. (2017). The project presentation and robot demonstrations

represent a key mechanism for participant learning and the development of mutual trust (another

key factor for participatory design). They were designed to i) equip participants with a better

6http://rasc.usc.edu/bandit.html
7https://www.youtube.com/watch?v=nFZ9sUbbfe8
8https://www.jibo.com/
9http://www.parorobots.com/

10https://www.youtube.com/watch?v=7rCqclvf12Y
11http://www.mobilerobots.com/ResearchRobots/P3AT.aspx
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Figure 2.2: Example output of the group ranking activity undertaken in the pre-demonstration
discussion of focus groups. Participants were asked to order factors which might affect user
adherence to and engagement with exercises in terms of impact.

understanding of socially assistive robotics and ii) explaining the research aims and objectives,

and the researcher’s desire to work with therapists to design an appropriate and effective system.

Following completion of the ranking exercise, participants were given a brief (approximately ten

minute) presentation about the research project which covered:

1. Background robotics literature: was presented as evidence suggesting that robots might

positively influence engagement with therapeutic exercises (specifically highlighting Gock-

ley & Mataric (2006) and Tapus et al. (2009)). Key points included i) embodied robots seem

to have greater impact than a screen based avatar equivalent and ii) a robot which seems

interested in what you’re doing may encourage you to work for longer.

2. An overview of research aims, objectives and activities: it was explained that this study

was part of a larger research project exploring the use of SARs to encourage engagement

in therapeutic/health-related exercise, lack of which is a known issue in rehabilitative

therapies. It was explained that the ultimate aim of the project was to test a prototype with

real users, and that the aim of this study was to i) generate some initial design guidelines

and inspiration for that system based on the therapists’ expert knowledge and ii)further

the researcher’s understanding of conventional therapy delivery.
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3. An introduction to the robot demonstrations: it was made clear the demonstrations were

designed just to give an initial idea of what such a robot may ‘look like’ (including e.g.

in terms of its behaviour and functionality). The engineering (rather than healthcare)

expertise of the researcher was noted in relation to creating the demonstrations. However,

it was explained that the demonstrations were designed in conjunction with an occupational

therapy researcher. Participants were also prompted to consider what they would have

done as a demo themselves, what they would have liked to see and any ‘can the robot...’

questions they might have after watching the demo.

As discussed above, in the pre-demonstration discussions participants were initially asked

very broadly how they thought SARs could be used in therapy. The presentation was then used as

an opportunity to share a specific proposed SAR application, i.e. for motivation and engagement

in exercises in-between conventional therapy sessions. It was highlighted that such a system was

not designed to replace the therapist, but as a tool to support them. The time taken to explain

why and how the researcher had identified that proposed application, i.e. the description of

background literature described in the project presentation, was an attempt to foster mutual

learning as per participatory design. Ahead of the demonstrations, participants were told that

the demonstrations were very much a ‘first draft’ of possible robot behaviours designed only to

illustrate the robot capabilities and give two examples of how such robots might be assistive

in a therapeutic context. Afterwards, participants were also reminded that the final aim of the

research project was to produce more complex, personalised and responsive robot behaviours. As

stated previously, up until this point Pepper operated in autonomous life mode but with audio

input turned off. To initiate the demonstrations, audio input was re-enabled via a head touch, at

which point the demonstrations were launched via voice command. After the demonstrations,

Pepper was shut down manually using the chest button and displayed its standard shutdown

behaviour animation.

The first demonstration showed Pepper facilitating a wrist exercise taken from a leaflet on

Tennis Elbow produced by Arthritis Research UK12. Pepper explained how to do the exercise

with reference to images (taken from the Arthritis Research leaflet) displayed on its tablet. It

then mimed checking the user’s motion, counted repetitions for three sets of five exercises and

gave encouragement. The second demonstration showed Pepper facilitating preparation of a

microwave meal. Pepper gave step by step instructions and prompts, again with reference to

images on the tablet. The demonstrations were live, with the researcher playing the role of a user

(undertaking the requested exercise, providing verbal responses of yes/no as appropriate etc.).

Pepper was operating autonomously throughout the focus group, interacting with the researcher

directly.

12https://www.arthritisresearchuk.org/arthritis-information/exercises-to-manage-pain/tennis-elbow-
exercises.aspx
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Post-Demonstration Discussion

The presentation and demonstration made participants aware of the potential to use a SAR

for motivation and engagement, and the literature that supported this approach. The post-

demonstration discussion was therefore more in line with user-centered design methods, with

participants being invited to give feedback and perspectives on this pre-defined research agenda.

The resultant data generated in this section was informed by participants’ increased understand-

ings of SARs and their capabilities and therefore allowed for more grounded/focussed discussion.

Post-demonstration discussion centred on participants’ reactions to the demonstrations and a

revisit of the discussion concerning the use of social robots in therapy. Additionally, participants

were asked whether there was any particular data about the user that the robot could collect

which would be useful for therapists to see.

Post-Focus Group Questionnaire

Directly after the focus group had been concluded and the audio recording equipment turned

off, participants were asked to individually complete another questionnaire. This questionnaire

contained a duplicate of the pre-session acceptance questionnaire (in order to investigate the

impact of participation) plus some additional questions. These questions, designed to ensure

maximum data capture and give a final opportunity for ideas and comments, were as follows:

1. In terms of achieving user behaviour change, what specific activities do you think a social

robot could help with and how? (e.g. activity prompts & feedback for exercises)

2. Which types of service user group(s) do you think could benefit from the use of a social

robot?

3. Any other comments?

2.2.2 Interviews

The interview schedule, given in Table 2.4, was designed to explore the role of the therapist with

respect to user engagement in more detail. It was refined based on the results of the focus groups,

which suggested the importance of personalised approaches for different service users. Interview

discussion points and activities included reflection on two, different service users, application

and evaluation of a potential categorisation tool and structured discussion. The ordering of these

elements and the related discussion points are given in Table 2.4 and detailed below. The full

topic guide is provided in Appendix A. Interviews were carried out on a 1:1 basis, at a later date

to the focus groups, and lasted between 50 and 105 minutes.

Reflection on Two Service Users

Ahead of the interview, participants were asked to think about two service users ‘who have

different levels of adherence, engagement or differing motivational needs’. The interview began
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Section Key Topics/Activities
Reflection on Two Service Users Unprompted description of pre-selected service users

Reasons for choosing these users, given the research questions
How participant works differently with these service users, and why

Categorisation Activity Introduce concept of categorisation in response to focus group finding on personalisation
Introduce NHS Healthy Foundations Segmentation Kit (Department of Health 2010)
Application of NHS Categorisation to participant selected service users
Brainstorming of custom categorisation framework or other approaches:
user traits (and identification of), related approaches

Structured Discussion Use of feedback: technical vs. motivational, positive reinforcement, triggers
Progressive conditions: reflecting on progress for motivation, long-term motivation

Table 2.4: Interview schedule and topic guide.

with the participant being asked to describe them, initially without any further prompting, to

investigate what traits/descriptors the participants naturally referred to. Participants were then

asked what made them choose those two service users in particular, before being asked for more

specific details on what factors might account for any differences between them, and how exactly

the participant might work with them differently. This was recorded in real-time on flip-chart

paper to ground discussions, an example output is shown in Figure 2.3. Note the later addition of

NHS personas (Balanced Compenator and Unconfident Fatalist) to the service user profiles.

Application and Evaluation of a Categorisation Tool

In order to explore the concept of a categorisation framework, initially identified as one

possible method of generating semi-personalised robot behaviours, the National Health Service

(NHS) Healthy Foundations Life-stage Segmentation Model Toolkit (Department of Health 2010)

was used to prompt discussions. This tool identifies 5 personas with different motivation to

engage in a healthy lifestyle, and was designed primarily to inform health intervention design;

two example personas are given in Figure 2.4. Participants were asked whether they felt the tool

was applicable to their service users, or could be helpful when thinking about personalisation.

This was used as a basis to prompt further listing of how and what user traits might inform

personalisation of approach.

Structured Discussion Points

Based on results from the focus groups and to further inform design guidelines for robot

behaviour, structured discussion was then used to investigate:

• the use of feedback: how the participant might use feedback during a session, particularly

regarding motivational versus technical feedback, and what might trigger the participant

to give feedback at a specific instance.

• reflecting on progress: focus group discussions suggested that reflection on service user

progress could be a key motivator, but how is this dealt with in the case of progressive

conditions where improvement was not expected.
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Figure 2.3: Example notes taken on participant description of two contrasting service users, as
well as resultant application and identification of the pertinent NHS categorisation tool personas.

25



CHAPTER 2. A STUDY WITH EXPERTS IN SOCIALLY ASSISTIVE INTERACTION

• Feel negative about things & themselves

• Might be depressed

• Feel a healthy lifestyle would not be easy

• Don’t feel in control of health/lifestyle

• Fatalistic, think they are more likely to get ill than others

• Lifestyle isn’t healthy and their health could be better

• Know they should do something about their health 

• Demotivated

◦ Older average age ◦ live in most deprived areas ◦ least likely to be 
in paid work ◦ more likely to be retired ◦ fatalistic about health ◦
hold negative perceptions of healthy lifestyle  

Unconfident Fatalists

• Positive, like to look & feel good about themselves

• Understand that their actions now impact on current 
& future health

• Health is very important to them & something they 
feel in control of

• Feel a healthy lifestyle is generally easy & enjoyable

• Will compensate for health risks e.g. going for a run 
the morning after eating a big meal/drinking too much

◦ Male bias ◦ highest proportion of people in full time work◦ exercise 

regularly◦ eat healthily ◦ low drug/smoking use

Balanced Compensators (BC)

Figure 2.4: Two different service user personas identified by the NHS Healthy Foundations
Life-stage Segmentation Model Toolkit, designed to inform health intervention design.
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2.2.3 Data Analysis

Transcripts of the focus group and interview discussions were (separately) analysed using the

Framework method, following published guidelines on the analysis of qualitative research data

multi-disciplinary health research (Gale et al. 2013). The data was first coded for key themes

using a combined deductive and inductive approach to coding. In both cases, initial codes were

generated based on the literature review and research questions. Two initial transcripts were

then coded by the researcher as well as a member of the supervisory team, with any additional

codes generated inductively as required. The resulting, individually generated codes were then

compared (considering overlap, frequency of occurrence etc.) and a final coding scheme was

generated for application to all transcripts.

A second level of inductive coding was then applied to specific nodes as required. The full

coding scheme for both focus group and interview data (including all second and third level

inductive codes) is given in Appendix A. Further according to the Framework method, themes

were then identified across the data by reviewing the coded data excerpts and making connections

within and between participants and coding nodes.

2.3 Findings

2.3.1 Use of SARs in Therapy (RQ1)

Initially, in the pre-demo discussions of focus groups, participants struggled to see how SARs

could be useful in therapy. Some of the physiotherapists had seen and used physically assistive

rehabilitation systems and commented they had been expecting to see something similar. Most

suggestions referred to current technologies such as smartphone applications, computer software

and fitness trackers. However, as the discussion progressed and participants were asked to reflect

on factors affecting engagement, without researcher reference to SARs, many then brought up

the idea of using a SAR to aid with that:

[P2]: “If you’ve got a buzz on your wrist telling you to move...it does get them thinking about it,

so if you’ve got some humanoid or puppy doing a similar sort of thing, because compliance is a

massive issue"

[P6]: “I could really see a place for that bit between sessions to help maintain motivation and

erm engagement in carrying out what otherwise could be quite mundane therapy programmes"

(P6)

After the demonstrations participants specifically identified and commented on the ways

in which a SAR might add value to existing technologies. Most of this discussion centered on

the value of embodied interaction for engagement and enjoyment. 8/21 participants also named

specific smartphone applications or computer software they currently use for providing feedback,

that they would like to see integrated with a SAR for motivation.
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Figure 2.5: Shift in valence of participant comments before and after witnessing focus group
demonstrations and project talk.

[P2]: “It’s just amazing how it moves, just that interaction with the eyes and the eyelashes

and stuff so it kind of makes it feel like there’s something, a more personal feel to it or, I know

personally for me, that I would work better with that than just looking at a tablet."

[SL2]: “people with a brain injury...they will use something like an iPad and it will be like step

by step instructions...they’ve got the photo and they’ve got a voice prompt...I can set it for a certain

time for the alarm to go off so it’ll say ‘don’t forget you need to do x’ but I think that with this, such

presence...they may be less likely to forget that they were doing something. I like that."

[P4]: “A lot of the time we use kind of targets or something for service users to aim at and I

wonder if that could be included within the screen or being able to reach out for Pepper’s hand"

These results also suggest that taking part in the focus group had a significant impact on

participant acceptance. Figure 2.5 shows the shift in valence of comments coded under ‘Therapist

Opinions’ and labelled as positive or negative during our data analysis. This represents an

additional potential benefit of pursuing a mutual shaping approach to HRI design, discussed

further in Chapter 5.

In terms of specific applications and use cases, participants immediately identified using the

robot as a mediator within session when working with children. For adults, participants saw it

more as a tool for service users to use in-between therapy sessions. Participants unanimously

agreed that children would love to work with the robot; and many felt the benefits could be

equally enjoyed by adults too.

[OT5]: “I think the value of novelty and fun is so therapeutic for adults as well...the effect, just

seeing it interactive made me feel a bit happier...it’s just nice"

Participants did suggest however that there may be some service users who had simply
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no interest in working with a robot. Some participants suggested this might be linked to age

but others disagreed. Participants all agreed however that personalisation of the robot and its

motivational strategies would be particularly important when working with adults, both for

acceptance and for maximising impact.

Concerns

Initially, participants’ concerns were centered on the value a robot could add to existing

technologies and whether that justified any additional associated cost. This significantly reduced

after the robot demonstrations, however some participants still questioned exactly how ‘fancy’

the robot needed to be in order to have a positive impact. Another key concern raised by multiple

participants was whether a robot could ever really be adaptive enough, or be able to ‘read’ the

user as discussed in Section 2.3.2.

[OT4]: “We get our input from what we observe we don’t often have the person say things we

just observe them and know what we need to do, so how does a robot then observe a person without

you having to instruct it?"

More practical concerns focused on the medical needs of specific users, e.g. being able to

recognise the speech of a dementia user. As these are very specific to particular use cases they

are not considered in detail here, but such practical requirements must be well considered when

designing assistive robots for real world use.

In terms of facilitating exercise sessions, one key concern was around giving accurate demon-

strations and feedback. Participants were wary of the robot trying to technically evaluate users

performance and hence suggested asking users to self-rate instead. In fact, this was highlighted

as a positive thing that therapists themselves often do, in order that users learn to recognise

good performance. Additionally, whilst participants liked the idea of the robot demonstrating

exercises itself, they were wary of it not being able to do so accurately and so suggested it might

be better to use a tablet or other conventional method.

2.3.2 Measuring Engagement with Therapy (RQ2)

Completion of self-practice and user progress were typically cited as easy to obtain long-term

measures of engagement; however it was noted that user reporting of self-practice is not always

accurate. Participants found it slightly more difficult to identify measures of engagement within

session, but typically listed social cues such as body position, facial expression, eye contact and

amount of questioning or discussion.

Significantly more discussion was focused on the recurrent theme of participants ‘getting

a feel’ for the user; which all participants found very hard to verbalise and explain. Typically

this would be done in initial interviews or discussions, from which participants felt they could

generally predict how engaged a user would be and what sort of approach might be appropriate

with them.
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[P1]: “I think the really important bit is the initial subjective interview with the user, you need

to know the whole psychosocial background really and understand where they are and really

by identifying their goals and things you get a good idea, you get a good feel, from verbal and

non-verbal communication"

All participants highlighted how much this impacted on their approach to working with the

user. Key identified user traits are discussed in detail under Section 2.3.4. Most participants

further suggested that ‘reading’ a user this way was an intuitive skill, built up with experience

over time.

2.3.3 Therapists’ Role in user Engagement (RQ3)

Discussions on this topic typically centered around two key themes, i) identifying and tackling

barriers to engagement and ii) improving intrinsic motivation. All participants recognised their

role in motivating the user.

“Do you find yourselves having to motivate service users?" [strong agreement from all] [P4]:

“And that’s hard when you’re working in an NHS field, you know that they need it, you know that’s

their personality but you just can’t, can’t give that"

Some participants also felt they had a role in providing external motivation to a user through

generating some sense of ‘accountability’, but pointed out the aim was always for improved

intrinsic motivation. This also fed into ideas around positive reinforcement.

[P5]: “They want to be held accountable to somebody [agreement from all] they’re not being

held accountable to themselves so they put you into a position of accountability and therefore

they’re doing it to please you when in fact it should be about pleasing themselves."

In cases where service users were already intrinsically motivated, participants still identified

the need to facilitate engagement, e.g. by helping them schedule a convenient time or suggesting

prompting and data recording methods to target memory issues.

Results from the ranking exercise undertaken in focus groups made it clear that factors

affecting engagement are very individual to each user. No group generated the same hierarchical

ranking as another, one group concluded it was impossible and in all groups the task prompted

significant deliberation, discussion and disagreement. However, some key themes concerning

how therapists typically target user engagement did emerge from this task as well as additional

interview discussions. These were:

• providing meaningful positive reinforcement

• improving knowledge and understanding of the user’s condition, therapy and its benefits

• personalisation of exercises based on interests

• personalisation of approach based on knowledge of user

• reflection on goals/ functional benefits of exercises
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• empowerment of the user

• relationship/rapport between the therapist and user

It also became clear that, as with factors affecting engagement, specific instances of these

were different for each therapist-user pair. This is discussed further in Section 2.3.4.

The Importance of Social Interaction and Influence

The list of ways that therapists target engagement presented above are almost all concerned

with social interaction between themselves and the service user. As such, their effectiveness

is completely dependent on the strength of their relationship with the service user, or more

specifically the influence the therapist has over them, which determines to what extent the

e.g. encouragements, prompts, admonishments they give are likely to have an impact on the

service user. This is quite well documented in the literature (c.f. The Therapeutic Relationship,

the Therapeutic Use of Self as described in Solman & Clouston (2016), Marilyn B. Cole MS &

Valnere McLean MS (2003), Taylor et al. (2009)) but was also identified by study participants as

something they are not only aware of, but actively work to maximise, personalising and tailoring

their approach where necessary, in order to get positive outcomes.

For example, Figure 2.3 shows notes taken about two different service users as presented

by participant SL1 during his interview. When identifying how he approached working with

service users P and A differently, he spoke very much around the difference in how he utilised

social interaction and they type of relationship he aimed to cultivate with them, even though

the end-goal was the same - to improve their compliance and engagement with his prescribed

exercises in-between sessions. As noted in Figure 2.3, with P he identified the need to take a direct,

work-like approach whereas with A he referred to the need for much more social interaction, as

per the following interview extract:

[SL1]: A’s probably informal, therapy through the backdoor and P is more direct therapy

because that’s what he expects. And would be disappointed if it weren’t.

[KW]: Would you consider A quite de-motivated at times?

[SL1]: Yes I would...she needs constant support.

[KW]: How do you do that then, is it a bit of coercion?

[SL1]: It’s a coercion yes, you can joke along with her you can have fun with her, very much

make her laugh, we tend to have a really good chat, banter first of all then serious stuff and then

back to the banter again.

[KW]: A sandwich of humour and seriousness?

[SL1]: Yes (laughs) and she would go along with this, she’d let me in the room she’d talk to me

but I don’t feel she would engage so much if you didn’t do that around the therapy, it has to be

an enjoyable experience for her I think. She has to enjoy the visit and she knows that a bit of it

is going to be me pestering her a little bit about what she’s got to do, she doesn’t mind that if its

amongst all this other stuff as well.
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[KW]: And is that true for P as well?

[SL1]: No I think P obviously gets enjoyment out of it and enjoys the session but wouldn’t

necessarily need that, wouldn’t need me to, we do chat alongside and we do sometimes laugh about

things but it’s not as important to P, I could certainly do sessions without that with him.

2.3.4 Personalised Approaches (RQ4)

Results from the focus groups made it clear that personalised approaches are key to motivation

and engagement in therapy. Taking a ‘client centered approach’ and tailoring therapy to the user

more generally was raised as best practice across professions.

[P1] :“I would always take a different approach with every user, so even if I was looking at two

service users with sore knees I’d be taking different approaches with those two people based on

their beliefs and expectations of the treatment."

This was explored further in the interviews using an NHS categorisation framework for

health behaviours, as discussed in Section 2.2.2. All participants could see the worth of trying to

tailor behaviour of a SAR based on the user, and agreed that there was value in identifying user

traits to inform that. Further, all could identify somewhat with the NHS framework descriptors

and personas. 7/8 participants however struggled with the concept of labelling people into discrete

categories, and preferred to instead talk about specific user traits and how those informed their

approach. The user traits consistently linked with informing therapist approaches are listed in

Table 2.5. Complimentary therapist approaches identified as being adaptable to each user are

listed in Table 2.6.

Other factors were identified as being important to engagement and therefore would be

targeted by the therapist (e.g. enjoyment of session) however these were less linked directly to

specific user traits. Section 2.3.2 discussed the concept of therapists getting a feel for service users

and their likely engagement. Many of these user traits might be identified this way, e.g. through

an initial interview. Other methods of learning about a user included reading their case notes or

assessing medical history, talking to friends, family or other health professionals, and observing

a user’s surroundings (particularly in the home). Other factors identified by participants as

relevant here, but less referred to when discussing specific approaches, include fear of exercise or

anxiety, mental health, realism/ acceptance, general positivity and perceived difficulty.

2.4 Design Implications for Socially Assistive Robots

Whilst the results presented specifically consider SARs for therapy, the resultant design implica-

tions can be generalised for other assistive scenarios in which the role of the SAR is to improve

engagement in self-directed activities, in conjunction with a domain expert practitioner.

Firstly, the results give support to the hypothesis that social robots can be useful, assistive

companions, and that the embodiment of a SAR might help to tackle the issue of low engagement
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Previous activity levels/engagement in sport
Indicates whether user is likely to understand the concept of training, and what expectations
they may have about returning to a certain level of activity. Informs e.g. approach to exercise
programme.
Employment status
Indicates the time pressures service users are likely to be under; but may also give an idea of
work ethic, education level and socio-economic situation. Informs e.g. approach to scheduling
sessions.
Motivation/ Self-efficacy
Indicates how willing the user is to change intrinsically already. Informs e.g. amount of positive
reinforcement given and style of motivational messages.
Cognition
Establishes how much a user can understand and remember. Informs e.g. communication style
and approach to exercise programme.
Education/ Intelligence
Indicates how much user is likely to know about their condition as well as therapy and its benefits.
Also raised as being potentially linked to motivation and likely linked to socio-economic situation.
Informs e.g. how knowledge and information is delivered.
Family/ Social Support Situation
Indicates whether additional external motivation and support is likely to be provided.
Functional Goal(s) and/or Interests
Functional goals establish service users’ main reason(s) for being in therapy, potentially giving
insight into motivation levels. Interests give the therapist something to incorporate into exercise
design or social interaction for rapport building. Both can be used for improving motivation.

Table 2.5: Key user traits identified as informing therapist approaches to facilitating and encour-
aging user engagement with therapy.

in a way in which things like smartphone applications, computer software and fitness trackers

cannot. Participants felt that patients would find a SAR more engaging, more enjoyable to work

with and harder to ignore, dismiss or forget about than current methods. Many other benefits of

SARs were proposed by the participants, however most of these follow on from the benefits of other

modern methods, e.g. a potential lack of embarrassment exercising with a device rather than a

person. Further, a SAR must still offer all of the functional capabilities of existing technologies in

order to be useful in the real world. To this end, the linking of SARs with existing technologies

such as smartphone applications and computer software, particularly those that already deal

with providing specialist technical/task-specific feedback, should be explored.

The results suggest that a SAR might help improve engagement by i) improving ease of access

and ii) providing motivational support. Proposed robot behaviours and functionalities to address

these aims are presented in Sections 2.4.1 and 2.4.2 respectively. Many existing methods already

address these aims to some degree; so all functionalities are listed for completeness and only

embellished in cases where use of a SAR specifically might offer additional value. In addition,

the results suggest that SAR interaction and engagement strategies must be personalised and
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Improving Knowledge & Understanding
e.g. targeted use of evidence, choice of language and level of detail when trying to help service
users understand why what they’re doing is important and beneficial
Exercise Style
e.g. whether exercises sessions are based more on traditional workouts or instead ’disguised’,
incorporated into daily activities etc.
Engagement Strategies
i.e. ways in which therapist addresses low engagement e.g. gamification/ competitiveness, distrac-
tion techniques.
Use of Feedback & Positive Reinforcement
e.g. style (challenging, technical or functional, reassuring), level of detail, amount etc.
Provision of Additional Support
e.g. exploring other health issues, providing additional lifestyle guidance such as eating/drinking
prompts, relaxation techniques etc.
Incorporation of Functional Goal(s)/ Interests
e.g. reflecting on functional rather than medical progress, using interests for distraction or
enjoyment.
Reminders & Prompts
e.g. whether jointly agreeing a time, an external prompt or reminder system, a method of
self-reporting etc.

Table 2.6: Key elements of therapy that therapists will personalise to the patient in order to
facilitate and encourage engagement.

adaptable to the user; this is discussed in detail in Section 2.4.3.

2.4.1 Improving Ease of Access

The following key robot functionalities are identified for improving ease of access to self-directed

activiies. Additional detail is provided in instances where SARs might offer additional value

compared to current methods, as indicated by *.

1. Scheduling, reminders and prompts*

2. Facilitating the actvity*

3. Data recording

4. Communication link to therapist

Scheduling, Reminders & Prompts

Ideally, the robot should approach and prompt the user to start an activity at the pre-agreed

time; potentially also giving the user an advance reminder (e.g. 20 minutes ahead of time) that

they are scheduled to begin shortly. How the robot deals with non-compliance should be decided as
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part of a higher level, personalised engagement strategy, as discussed in Section 2.4.3. However,

there is an opportunity for SARs to add value here by:

i) dealing with non-compliance in a socially appropriate way based on the user (i.e. reacting to

real-time social cues and/or as per domain expert strategies)

ii) learning about the user to inform which behaviours to perform when, e.g. learning which social

cues are linked to engagement and likelihood of compliance

iii) adapting both scheduling practicalities (e.g. suggesting new times, reminder settings) and

social behaviour in order to maximise likelihood of compliance.

Facilitating the Activity

The robot should guide the user through activities defined and set by the domain expert;

ideally by displaying and referring to a video demonstration and/or demonstrating the movements

itself if possible. Specifically with Pepper, it was suggested that a video demonstration would be

best, as the robot would not be able to demonstrate movements in a realistic way and hence may

risk having users attempt an incorrect/unsafe movement. Additional value could be generated

by utilising the embodiment of the SAR during activities; e.g. using the robot end effectors as

targets for exercise. Motivational impact associated with SAR interactions within session are

discussed in the following session.

2.4.2 Improving Motivation

The following list represents general strategies a SAR might employ in order to motivate the

user. All of these strategies are employed in some way by existing methods therapists might

use, either directly or through other technologies like fitness trackers, to improve motivation.

However, participants felt that embodied interaction with a social robot would add value to items

1-5 even if there was no specific additional functionality gain. Participants were also able to

suggest robot specific behaviours for enjoyable interactions. These were mainly based either on

physical contact between the user and the robot (e.g. a high-five) or through the robot being

‘entertaining’ through use of its body (e.g. dancing, cheer-leading etc.).

Existing literature reinforces these ideas. Previous research has demonstrated the value of

embodiment in similar scenarios (e.g. Tapus et al. (2009), Wainer et al. (2007)). Furthermore,

social HRI studies have demonstrated the impact of specific robot behaviours (including touch) on

motivation (Nakagawa et al. 2011) and persuasion (Chidambaram et al. 2012). Based on this, it

seems worthwhile to further develop and test specific, physical social robot behaviours targeting

motivation as might be appropriate to specific application contexts.

As identified in Section 2.3.4, the way in which a practitioners might try to improve a users

motivation is very specific to that individual; the general strategies here require personalisation

to be effective. This is discussed in detail under Section 2.4.3.

1. Reflecting on activity progress & goals
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2. Improve knowledge & understanding of why the activity is important

3. Provide positive reinforcement & motivational feedback

4. Allow practitioner to access activity data, and remind users of this

5. Make the activity (more) enjoyable

2.4.3 Personalisation & Adaptability

Findings from this study suggest it is vital for the robot to be personalised to the user in its

overall functional, motivational and interaction strategies as well as able to adapt in real-time to

user behaviour during interactions. These are hereafter referred to as high level personalisation

and real-time adaptation respectively.

High Level Personalisation

The results presented in Section 2.3.4 suggest that a discrete categorisation framework of

user ‘motivation type’ and associated robot settings is unlikely to achieve the necessary level

of personsalisation. Instead, high level personalisation will likely require the adjustment of

a number of key robot characteristics based on particular user traits. An initial list of robot

settings, based on the therapist behaviours listed in 2.6 is presented below. A brief description of

each setting is given, along with user traits which may be relevant (based on the service user

traits listed in Table 2.5). Associated personality traits have been linked to settings according

to equivalent mappings identified by the therapists, as discussed in Section 2.3.4. These have

still been generalised and should be applicable to other SAR scenarios, but will definitely require

further refinement for other applications. Additional further refinement of traits, and testing and

development with end users is required for refinement and validation in any use case scenario.

To this end, User Preference has been included as an additional ‘user trait’ for settings which

might be chosen directly by the user rather than as a result of their traits.

1. Style of Approach

Whether the robot should take e.g. a more direct, activity focused style or a more friendly,

indirect approach to the required task(s). This would impact e.g. use of language, level of

formality and amount of unrelated interaction.

Previous level of activity; Self-efficacy; Education

2. Reminder Protocol

The process by which the robot reminds users about/prompts users to start an activity, e.g.

is it at a set time, do they get advance reminders, flexibility (e.g. how often can they say

no), the way in which negative responses are dealt with etc.

Employment; Social support
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3. Knowledge Delivery Approach

How the robot delivers information aimed to increase knowledge of surrounding the ac-

tivity and its importance. To include e.g. whether knowledge should be more technical or

functional based, how often it should be delivered, method of delivery etc.

Previous level of activity; Self-efficacy; Cognition; Education; Functional goals/interests

4. Use/Desired Impact of Feedback

Tailoring of motivational messages and feedback e.g. to be more challenge focused/competitive

versus reassurance based.

Previous level of activity; Self-efficacy; Cognition; Education; Functional goals/interests

5. Engagement Strategies

Strategies combating a lack of engagement during activity sessions. To include e.g. distrac-

tion techniques, gamification or increased social interaction. Further design, testing and

validation of such strategies is required.

Self-Efficacy; Cognition; Social support; Functional goals/interests; User preference

6. Robot ‘Persona’

Characteristics of the robot’s persona, to include e.g. gender, voice options.

User preference

Real-time Adaptation

Building on the the idea of overall personalisation, the robot should also adapt its behaviour in

real-time based on the user during activity sessions and other interactions. This adaptation should

be informed by the high level personalisation described above. Whilst our study highlighted the

importance of such adaptation, it was more difficult to isolate specific user cues and the therapist

behaviours to which these would be linked.

The use and tailoring of feedback was one therapist behaviour consistently linked with

real-time adaptation and user cues. Specifically, participants discussed being empathetic as they

encouraged the patient (i.e. by recognising and acknowledging fatigue or discomfort) and using

personalised feedback or positive reinforcement (as per the high level personalisation) when most

needed. This correlates with a previous finding that users exercise for longer with SARs which

include acknowledgement in their motivational model (Schneider et al. 2017).

In order to maintain engagement during an activity session, the robot should employ pre-

defined strategies as discussed in the previous section (e.g. gamification/competitiveness, addi-

tional social interaction etc.). However, to do this it must be able to recognise when the user

is disengaged. Some initial real-time measures of engagement are identified in Section 2.3.2.

Existing research on automatic analysis of engagement demonstrates it is possible, but heavily

dependent on user personality; further reinforcing the importance of personalisation in this
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context (Salam et al. 2017). It is expected that investigating this more will require ethnographic

observation and potentially coding of practitioner behaviour and practitioner-user interactions.

2.4.4 Socially Assistive Robots Need Social Influence

Based on the results from the study with therapists, it is a key postulate of this thesis that

social assistance is achieved through social influence, i.e. that user behaviour is changed (as

desired) by manipulation of the social environment. Therefore, SARs must also be able to impact

on and manipulate the social environment in order to effect the same type of social influence.

For example, the concept of user accountability to the practitioner is discussed in Section 2.3.3.

Participants were unable to agree whether the presence of the robot, and it ‘watching’ and

monitoring the user’s engagement would be able to replicate that phenomena. This raises the

question of whose social presence a SAR would really leverage - it’s own, that of the relevant

practitioner, or potentially both? It would be worthwhile to test user compliance with a SAR with

and without practitioner data sharing capabilities in order to investigate this.

Whilst the design implications here regarding e.g. certain functionalities and the personal-

isation of behaviours are aligned to this requirement, further work is required to understand

exactly to what extent the human phenomena of social influence can be replicated in HRI. The

presence of a robot has been demonstrated to change people’s behaviour in terms of e.g. honesty

and obedience (Forlizzi et al. 2004) and decision-making (Stanton & Stevens 2014); therefore it

is reasonable to expect some change in user behaviour just from introducing a robot into their

self-directed activities. However, few previous works in HRI have drawn from human-human

social influence/persuasion literature directly, and therefore it is still to be investigated whether

e.g. human models of influence and persuasion can be of use in robot design. This position also

raises a number of ethics and acceptability questions which must be addressed both to ensure

responsible design/development but also to ensure any resultant SARs are acceptable to, and

hence utilised by, end users. These considerations are discussed in detail in Chapter 3.

2.5 Conclusion

This chapter presents findings from a study with therapists, consisting of 5 focus groups and

8 interviews (total pool N = 21 occupational, sports rehabilitation, speech and language and

physiotherapists). The study was designed to investigate participants behaviour participants’

behaviour in supporting service users to engage with self-directed therapeutic exercises (as an

exemplar in assistive human-human interaction), and their perception and ideas of how SARs

could be helpful in this context. Key findings from the study can be summarised as follows:

• Participants identified the potential for SARs to improve engagement with therapeutic

exercises, noting the impact of embodiment compared to e.g. a smartphone application
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• Whilst participants identified some common measures of long-term engagement with

prescribed exercises, they found it harder to explicitly identify within-session measures of

task engagement, and also noted the importance of/their ability to get a feel for a service

user and their engagement

• Therapist’s social influence on their service users is crucial to their ability to then provide

assistive interactions - participants identified the importance of their relationship and

social interaction with the service user, which they cultivated and utilised both to provide

external motivation (e.g. a source of accountability) but also in then trying to improve

intrinsic motivation (e.g. by discussing importance and benefits of engagement)

• Participants stressed the importance of both ‘high-level’ personalisation and real-time

adaptation when working with service users

These findings were analysed to generate a set of design implications for informing assistive,

social HRI and SAR design more generally. These include key robot functionalities, considering

how SARs might add value to existing methods, and discussion of the need and type of personali-

sation. To this end, an initial list of key robot characteristics which should be personalised, and

specific user traits these might link to, is also presented.

Arguably however, the most crucial conclusion from this study is about (i) the extent to which

social influence can account for user adherence to/engagement with a prescribed exercise regime,

even though such regimes have intrinsic benefits/might seem to be of obvious importance for

service users’ health/wellbeing and (ii) how this informs practitioners’ behaviour. Practitioners

are acutely aware of the role social influence plays shaping user behaviour, and explicitly aim to

cultivate such effects through intelligent and purposeful tailoring of their own social behaviour

and interactions with the service users. The resulting axiom for SARs can be summarised as

follows:

Social influence is defined as the way in which individuals change their behaviour in response

to a social environment (Gass 2015). In socially assistive human-human interaction scenarios

such as healthcare, social influence is a key mechanism by which practitioners actively attempt to

impact on service user compliance and engagement with beneficial activities. If socially assistive

robots are to provide a similar function in such scenarios, they must similarly be able to effect user

behaviour changes through social influence. The effectiveness of such robots will therefore depend

on their ability to intelligently leverage social interactions and tailor their social behaviour for

maximum impact on the user.

This represents a new way of conceptualising socially assistive HRI, as an attempt to shape

user behaviour through social influence, novelly posited by this thesis. Such conceptualisation

raises the question of whether, building on the design guidelines presented here, models of social

influence from human psychology might also be used to inform SAR design/automation. This
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question motivates the work presented in Chapter 2: Persuasion as a Model for Socially Assistive

HRI.
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PERSUASION AS A MODEL FOR SOCIALLY ASSISTIVE HRI

The study with therapists presented in Chapter 2 led to the notion that socially assistive

human-robot interaction (HRI) might be framed as the effecting of user behaviour change

through social influence. This chapter firstly presents a review of relevant human-human

interaction (HHI) and social HRI literature to further demonstrate how this framing is evidenced

by existing literature. Three studies are then presented to (i) demonstrate the effectiveness of

socially persuasive behaviours, in the context of a socially assistive robot (SAR), and (ii) consider

whether such behaviours can be designed to conform with a published standard for the ethical

design of robots whilst still being effective. Resultant, practical design implications for SARs and

social HRI more generally are also presented alongside the potential ethical considerations which

ought to be made on their implementation. Part of the work presented in this chapter (specifically

limited to Study 1) is described in the following publication:

Winkle, K., Lemaignan, S., Caleb-Solly, P., Leonards, U., Turton, A. and Bremner, P., 2019, March.

Effective persuasion strategies for socially assistive robots. In 2019 14th ACM/IEEE International

Conference on Human-Robot Interaction (HRI) (pp. 277-285). IEEE.

3.1 Introduction

A key conclusion from Chapter 2 was that successful socially assistive HHI should result in

desirable user behaviour change through social influence. This chapter therefore considers

whether literature on social influence could usefully inform the design of SARs. Specifically,

persuasion is identified as a form of influence by which one agent might effect behaviour change

in another, that may be an appropriate way to model the type of task-focused socially assistive

HRI considered in this work. It is posited that this modelling works at two levels:
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(i) In many applications of SAR specifically, the role of the robot is to prompt/encourage

particular user behaviour(s) e.g. in the context of facilitating and encouraging exercise

(Schneider et al. 2017, Lara et al. 2017, Swift-Spong et al. 2015). These can be considered

instances of persuasion.

(ii) Human persuaders intelligently engage in social/socially persuasive behaviours in an

attempt to boost their (perceived) credibility and likeability. This is analogous to approaches

in social robotics more generally that consider how robot behaviour/design can impact how a

robot is perceived (e.g. Lucas et al. (2018), You & Robert Jr. (2018), Martelaro et al. (2016))

typically in an attempt to boost the ascription of desirable traits which show overlap with

the human constructs of credibility and likeability (Gass & Seiter 2015).

This chapter presents a review of existing literature as well as three new studies to support

this assertion, whilst also considering the resulting acceptability and ethical implications.

Study 1: ELM for Socially Assistive Robotics

A between-subject, laboratory based study designed to investigate the impact of persuasive

social behaviour (demonstrations of goodwill, similarity and expertise), derived from the Elabo-

ration Likelihood Model (a human model of persuasion), on perception and persuasiveness of a

socially assistive robot.

Study 2: Varying the Source of Expertise

A within-subject, online, video-based study designed to investigate the impact of varying

the source of expertise the robot refers to (i.e. referring to its own expertise versus the patient’s

therapist’s expertise) on perception of a socially assistive robot.

Study 3: (More) Ethical Design of Social Dialogue

A within-subject, online, video-based study designed to investigate the impact of designing

socially persuasive dialogue in a way that better complies with recommendations from BS 8611

(by being less anthropomorphic) on perception of a socially assistive robot.

Key contributions from this work are as follows:

1. Novel consideration of persuasion as one way to model socially assistive HRI, also (re-

)framing approaches in social HRI more generally in the context of building credibil-

ity/likeability as per persuasion in HHI.

2. An HRI study in support of the above, demonstrating:

• an exemplar SAR use case scenario showcasing the persuasive nature of SAR func-

tionality.
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• the effectiveness of HHI-inspired persuasive strategies as applied to robot design in

this context.

3. Consideration of the ethical implications of designing socially persuasive robots, including

two preliminary online studies investigating any potential trade-off between ethical design

and effectiveness.

4. Detailed qualitative data collection and analysis across all of the above, providing a sig-

nificant insight into the complex reasoning underlying how social robot behaviours are

perceived, the way they might impact on user behaviour and whether or not this can

be measured through the Likert and semantic difference style questionnaires typically

employed in HRI studies.

3.1.1 Persuasion and Social Influence in HHI

Social influence can result from a number of different psychological phenomena. For example,

Kelman defined three varieties of attitude change, compliance, identification and internalisation,

that might result from social influence (Kelman 1958). Other types of social influence that

might result in behaviour change include conformity (Aronson et al. 2010), reactance (Brehm

1966), obedience (Milgram 1974) and persuasion (Gass & Seiter 2015). Of these, only compliance,

obedience and persuasion specifically relate to one agent making specific requests of another,

and hence are viable for modelling the kind of task-focused, instructor-led socially assistive

interactions considered in this work.

Considering the study with therapists in Chapter 2, therapists should represent figures of

authority to their service users, and obedience may therefore form part of the reason they can

influence compliance with a task. However, attempts to generate obedience alone would not

account for the large range of social interaction reported by the therapists. Similarly, the main

difference between compliance and persuasion is that compliance refers specifically to a change

in behaviour but not necessarily attitude (Aronson et al. 2010) whereas persuasion might attempt

to influence beliefs, attitudes, intentions, motivations and/or behaviours (Gass & Seiter 2015).

This focus on changing attitudes and motivations, rather than simply gaining compliance with

an instruction, is also much more in line with approaches described by the therapists.

There are numerous theories of persuasion that attempt to explain if, how and why a change

in beliefs, attitudes, behaviour etc. might be achieved. These include e.g. the Theory of Planned

behaviour (Armitage & Conner 2001), Conditioning (Rescorla 1971), the Elaboration Likelihood

Model (Cacioppo & Petty 1984) and Social Judgement Theory (Sherif & Hovland 1961). The

Elaboration Likelihood Model (ELM) was identified as a model that might be suited for application

to socially assistive scenarios, and specifically for informing SAR design, based on the associated

persuasive strategies (see S1-S6 below) and ‘routes’ to persuasion having significant overlap with

behaviours and approaches described by the therapists.
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The ELM identifies two routes by which someone receiving a persuasive message (the receiver)

from a persuasive source may be persuaded. These are the central route, based on rationale

and logic, and the peripheral route, based on stimulus cues including a number of social cues

concerning the source (Petty & Cacioppo 1984). According to the ELM, the processing route taken

by a receiver is based on their elaboration level; i.e. their motivation and ability to elaborate on

the persuasive message. Results from the study with therapists presented in Chapter 2 suggest

that the majority of service users would be considered low elaboration with regards to the need

to do their exercises. As such, it is the low elaboration route of persuasion that is considered in

the studies presented here. Of course, there will be some users who would be considered high

elaboration, and, over time, therapists might hope to change users’ attitudes such that they move

from being low elaboration to high elaboration with respect to the need to do their exercises. The

fact that the model identifies different persuasion strategies to be used in either case improves

its potential for informing adaptive/tailored persuasive strategies (and hence SAR design) for

maximum effectiveness.

Concerning low elaboaration persuasion, the two key source peripheral cues identified by the

ELM are credibility and likeability (discussed further below). Similarity between the receiver

and the source is also highlighted as a relevant cue, although it is not clear whether this

affects credibility and/or likeability specifically (Simons et al. 1970, Wilson & Sherrell 1993,

Pornpitakpan 2004).

Defining Credibility

O’Keefe defines credibility as "judgements made by a perceiver (e.g. a message recipient)

concerning the believability of a communicator" (O’Keefe 2002). Notably this definition recognises

that credibility is subjectively held by the receiver rather than being an objective property of the

source. Whilst different sources possess different attributes and abilities, the values assigned to

these resides in the receiver, not the source, such that credibility is a perceptual phenomenon.

In an early consideration of what makes a source credible, Aristotle argued the source traits

that “induce us to believe a thing apart from any proof of it ...[are] good sense, good moral

character and goodwill" (Aristotle 1954). Modern day factor analysis supports his statement; it is

now generally accepted that there are three primary dimensions of credibility relevant to the

evaluation of a source: expertise, trustworthiness and goodwill (Gass & Seiter 2015). Gass & Seiter

(2015) further note that credibility (i) is a multidimensional construct representing a combination

of qualities a source is believed to possess, (ii) is a situational/contextual phenomenon affected by

audience and setting and (iii) is dynamic and can change over time, even during the course of

a single interaction/message. Extroversion, composure and sociability have also been identified

as secondary, situation specific dimensions. Scale items used to measure the main expertise,

trustworthiness and goodwill dimensions, plus the secondary sociability dimension (identified as

being the most relevant to HRI design and informing measures used in the presented studies)

are given in Table 3.1.
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Expertise Trustworthiness
Experienced / Inexperienced Honest / Dishonest
Informed / Uninformed Trustworthy / Untrustworthy
Trained / Untrained Open-minded / Close-minded
Qualified / Unqualified Just / Unjust
Skilled / Unskilled Fair / Unfair
Intelligent / Unintelligent Unselfish / Selfish
Competent / Incompetent Moral / Immoral
Bright / Stupid Ethical / Unethical

Genuine / Phony
Goodwill Sociability
Cares about me / Doesn’t care about me Good-natured / Irritable
Sensitive / Insensitive Cheerful / Gloomy
Not self-centred / Self-centred Friendly / Unfriendly
Concerned with me /
Not concerned with me
Has my interests at heart /
Doesn’t have my interests at heart
Understanding / Not understanding

Table 3.1: Bipolar adjectives for measuring credibility with a semantic difference scale (Gass
& Seiter 2015) implemented as 5-point questionnaire items for the studies presented in this
chapter.

Documented strategies for enhancing credibility (Gass & Seiter 2015) that might be applicable

to social HRI design include:

(S1) citing expertise or those of the information source

(S2) displaying goodwill towards the receiver, i.e. caring about/taking an interest in them

(S3) improving likability by showing ‘emotional intelligence’ - conveying warmth and immediacy,

smiling, remembering people’s names, being polite etc.

(S4) emphasising similarity between the receiver and the source

(S5) having the source be introduced by a credible third person

(S6) adopting a language and delivery style appropriate to the recipient

(S7) attempting to build trust by demonstrating honesty and sincerity

(S8) using an assertive style of communication

(S9) being introduced/endorsed by another source who is already perceived as highly credible
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These strategies were also evidenced in the results of the study with therapists presented

in Chapter 2, e.g. in SL1’s description of how he works differently with two different clients,

using different language/delivery style for each and engages in the kind of social interactions

appropriate for each of them (needing to have ‘fun and a joke’ with Patient A but taking a more

formal approach with Patient P). Further, therapists referred to such strategies both in providing

external motivation through social support/accountability, which would align to the concept of low

elaboration persuasion, but also in making themselves credible such that clients engaged with

their reasoning. For example, this included rationalising why certain exercises were important in

an attempt to improve their intrinsic motivation, which is more aligned with high elaboration

persuasion.

3.1.2 Related Work

Reference Measure of Robot Persuasiveness Robot Manipulations Q P Q on P
Saunderson & Nejat (2019)* Compliance with suggestions Dialogue, gestures, movement - - X
Lee & Liang (2019)* Compliance with task request Performance at a task - X o

Request strategy
Ghazali et al. (2019)* Compliance with suggestions Mimicry of movement X o -

Affective feedback
Cruz-Maya & Tapus (2018)* Concessions in a negotiation Speed of speech o m -

Choice of gestures
You & Robert Jr. (2018) Trust of & intent to work with Similarity to participant X - -
Rossi & D’Alterio (2017)* Compliance with suggestions Gaze - X -
Lohani et al. (2016) Compliance with suggestions Social dialogue X X X
Kahn et al. (2015) Compliance with request to keep a secret Sociability X X X
Salem et al. (2015) Compliance with unconventional tasks Robot errors X o -
Ham et al. (2015)* Agreement with a persuasive story Gaze, gestures o X -
Ham & Midden (2014)* Minimising energy consumption Affective feedback - X -
Chidambaram et al. (2012)* Compliance with suggestions Gaze, gesturing, proxemics o X X
Nakagawa et al. (2011) Time spent/actions on a monotonous task Touch X X o
Siegel et al. (2009)* Compliance with a request to make a donation Gender X X -
Gockley & Mataric (2006) Time spent/actions on an exercise task Engagement in user activity o o X

Table 3.2: An overview of related HRI studies examining the impact of different robot behaviours
in the context of SARs and/or robot persuasiveness. The first column provides a reference and
identifies the measure (or proxy measure) of robot persuasiveness employed in the study described.
The second column identifies exactly what robot behaviour(s) were being manipulated. The next
two columns identify whether those behaviours were found to significantly impact on (Q) any
questionnaire measures (i.e. on perception of the robot) and (P) persuasiveness of the robot as per
the identified measure. Finally, the ‘Q on P’ column identifies whether there was any correlation
between participants’ perception of the robot (questionnaire responses) and persuasiveness of the
robot. Key: X= significant, o = not significant, m = mixed, - = not applicable/not implemented.
Note that only those marked * made explicit reference to the concept of persuasion.

Table 3.2 gives an overview of related work, identifying HRI studies which have investigated

the impact of different robot behaviours on (i) (objective) user behaviour and (ii) (subjective)

user perception of that robot in relevant contexts. Many of these do not refer to the concept

of robot persuasiveness directly; including studies which seemingly manipulate behavioural
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cues identified by the ELM (e.g. similarity (You & Robert Jr. 2018) and goodwill towards the

user (Gockley & Mataric 2006, Kahn et al. 2015)). Of those which do refer to persuasion literature,

none refer to the ELM specifically for informing persuasive robot strategies nor understanding

persuasion in HRI. Only the most recent works (Saunderson & Nejat 2019, Cruz-Maya & Tapus

2018) start to describe a potential link between socially assistive robotics and persuasion.

Particularly relevant to this thesis is Gockley and Mataric’s early work on using a hands-off

mobile robot to encourage physical therapy (Gockley & Mataric 2006). The authors explored

whether the behaviour of a very simple, mobile robot could influence participant engagement

with exercise tasks typically employed in stroke rehabilitation. They attempted to manipulate

perceived robot engagement in the participants’ behaviour, with the hypothesis that increased

robot engagement would increase the amount of exercise participants would do. The authors

ran a pilot study in which participants undertook three open-ended exercise tasks (participants

were told to ‘repeat this process until you feel that you have exercised your arm enough at this

time.’). Whilst participants were exercising, the ‘engaged’ robot moved forward and backward in

response to participants’ exercise movement. For the ‘unengaged’ robot, movement was completely

decoupled from participant behaviour. This specific manipulation failed, however, participants

who rated the robot as being more engaged in their activity did do more exercise, providing

evidence for the idea that presence of a robot which appears to be interested in the user can

influence their behaviour. This is a particularly interesting result given the low social fidelity of

the robot platform employed (a Pioneer 2-DX mobile robot). Whilst the paper made no reference

to persuasion, it could be argued that ‘having an interest in the user’ represents the ELM cue of

goodwill (Gass & Seiter 2015).

Also employing an open-ended task, Nakagawa et al. (2011) investigated the effect of robot

touch on user motivation, demonstrating that active robot touch increased users’ number of

working actions and working time on the task. Interestingly however, the authors found no

correlation between these measures and participants’ perception of the robot (feelings of friend-

liness, authority and trust) as measured by questionnaire. The authors ran a between-subject

laboratory study in which participants first interacted with the robot, which either actively

stroked their hand, passively touched their hand or did not touch the participant. The robot

then asked participants to do a task in a relatively personal/social manner: ‘I’d like you to do the

following task as well as you can’. The task was designed to be monotonous and repetitive, and

participants were able to end the task at any point.

You & Robert Jr. (2018) investigated the effect of robot-user similarity on trust and intention

to work cooperatively with the robot. The authors ran an online, between-subject study in

which participants were faced with a hypothetical scenario whereby they would be working

collaboratively with a robot on physical tasks in a warehouse. Participants answered a number of

questions about work style, and after each one the robot responded that it also chose their answer.

The results demonstrated that deep-level similarity (suggested via this simple robot-reported
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similarity of answer) increased trust in the robot, and that trust increased intention to work with

the robot.

3.1.3 Ethical Considerations

The concepts of robot ethics and ethical robotics are receiving increasing attention from academia,

political institutions and the general public. This is evidenced by increasing publications on the

topic (see e.g. Vandemeulebroucke et al. (2018) for a review of ethics literature regarding the use

robots in care). There is also a significant number of guidelines emerging, designed to inform

robot design and development; a recent review identified 25 distinct sets of such principles for

robotics and AI1.

Considering the philosophical, ethical arguments for the use and design of SARs in e.g.

healthcare is not a primary aim of this thesis. However, as part of the responsible approach to

innovation taken throughout the work, it is important that ethical implications concerning the

robot behaviours designed, tested and discussed in this chapter are considered just as much as

any other design, measure of success and/or usability considerations. To this end, the British

Standard BS 8611 (BSI 2016) was identified as a practical tool for assessing the potential for

ethical harm. The official overview of the standard, provided by the British Standards Institute,

is given in the texttbox below.

BS 8611 gives guidelines for the identification of potential ethical harm arising from the growing

number of robots and autonomous systems being used in everyday life. The standard also provides

additional guidelines to eliminate or reduce the risks associated with these ethical hazards to an

acceptable level. The standard covers safe design, protective measures and information for the

design and application of robots.

Who is this standard for?

• Robot and robotics device designers and managers

• The general public

Why should you use this standard?

BS 8611 was written by scientists, academics, ethicists, philosophers and users to provide guidance

on specifically ethical hazards associated with robots and robotic systems and how to put protective

measures in place. It recognizes that these potential ethical hazards have a broader implication

than physical hazards, so it is important that different ethical harms and remedial considerations

are considered. The new standard builds on existing safety requirements for different types of

robots, covering industrial, personal care and medical.

1http://alanwinfield.blogspot.com/2019/04/an-updated-round-up-of-ethical.html

48



3.1. INTRODUCTION

Reviewing the standard instantly identifies the potential for the behaviours discussed in this

chapter, both those proposed by the author and those reviewed from existing HRI literature, to be

considered as ethically hazardous. Specifically, the standard identifies the hazards of deception

and anthropomorphization identifying mitigation strategies as follows.

On deception: Avoid deception due to the behaviour and/or appearance of the robot and ensure

transparency of its robotic nature.

On anthopomorphism: Avoid unnecessary anthropormorphization. Clarification of intent to

simulate human or not, or intended or expected behaviour. Use anthropomorphization only for

well-defined, limited and socially-accepted purposes.

In both cases, user validation and expert guidance are given as tools for verification/validation

for assessing and mitigating such risks.

The work presented in this chapter already encapsulates some expert guidance, as it is

informed by the study with therapists presented in Chapter 2. In addition, all of the studies

presented in this chapter are designed to include an element of user validation. Specifically, exper-

imental measures concerning perceived deception in and acceptance of, the demonstrated robot

behaviours were included. Further, Studies 2 and 3 of this chapter are specifically concerned with

investigating the potential impact that better complying with these mitigation strategies might

have on the effectiveness of socially persuasive robot behaviours. To the author’s knowledge, this

initial, practical consideration of the potential ‘cost’ of designing more ethical robot behaviours,

specifically informed by a published standard, is novel in the field of social HRI.

3.1.4 Research Questions and Overview of Studies Presented

As with Chapter 2, the studies presented in this chapter are grounded in the SAR application of

supporting therapy engagement, particularly limiting the consideration of acceptability noted in

RQ4, to this application domain. However, the aim for the other research questions is to inform

SAR and social HRI more generally, such that they can be summarised as follows:

RQ1 Can HHI credibility-boosting/persuasive strategies increase objective robot persuasiveness?

RQ2 Can HHI credibility-boosting/persuasive strategies increase subjective/perceived robot

credibility and/or likeability?

RQ3 Is there a correlation between questionnare measures designed to measure perception of a

robot and objective measures (of user behaviour) designed to measure robot persuasiveness?

RQ4 Are socially persuasive robot behaviours acceptable in the context of assistive HRI? Are

they considered e.g. genuine, or deceptive?

RQ5 Would designing socially persuasive robot behaviours that in a way that minimises ethical

risk have any impact on their potential effectiveness?
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Study Medium Manipulations Perception and Subjective Measure(s) Persuasion Measure RQ’s

1 Laboratory

Socially persuasive behaviour strategy

Between-subject:
- Goodwill
- Similarity
- Expertise
- Control (neutral social interaction)

Credibility (Gass & Seiter 2015)
Likeability (Bartneck et al. 2009)
Responsibiliy ascription
Relationship development (Hall et al. 2014)
Genuiness (goodwill, similarity only)
Acceptability/Deception

Exercise repetitions 1, 2, 3, 4

2 Online

Source of expertise presented by the robot

Within-subject:
- Robot’s own expertise
- Therapist’s expertise
- Control (no expertise)

Credibility (Gass & Seiter 2015)
Likeability (Bartneck et al. 2009)
Responsibiliy ascription
Relationship development (Hall et al. 2014)
Robot preferences

2, 5

3 Online

Design of social dialogue

Within-subject:
- Anthopomorphic (less ethical)
- Ethical (less anthropomorphic)
- Control (no social dialogue)

Between-subject:
- Priming of potential for deception

Credibility (Gass & Seiter 2015)
Likeability (Bartneck et al. 2009)
Responsibiliy ascription
Relationship development (Hall et al. 2014)
Robot preferences
Acceptability/Deception

2, 4, 5

Table 3.3: Overview of experimental studies on persuasive social robot behaviour presented in
this chapter.

Three experimental studies were used to address these research questions. An overview of

these studies describing the manipulations and measures employed, as well as which research

questions are addressed in each study, is given in Table 3.3. As shown in Table 3.3, a number of

the measures were used across all of the studies. These are described below and presented in full

in Appendix B. The measures on responsibility ascription and relationship development were

administered using 5-point Likert response scales, and were presented after the main credibility

and likeability measures. Study specific measures are detailed within the respective subsections

below.

Credibility

Robot credibility was measured using questionnaire items designed to measure credibility of

a human source; with 5-point Likert question items arranged in subscales of expertise, trustwor-

thiness, goodwill and sociability (as presented in Gass & Seiter (2015), adapted from McCroskey

& Teven (1999) and McCroskey & Young (1981)). The question item descriptors are given in Table

3.1.

Likeability

Robot likeability was measured using the likeability scale of the Godspeed questionnaire

(Bartneck et al. 2009). Other items from the Godspeed questionnaire were not included due to

significant overlap with the credibility measure.

Relationship Development

Relationship development questions were worded as below, taken from a previous study
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investigating engagement in HRI (Hall et al. 2014), and were included based on the importance

of the therapist-patient relationship in therapeutic exercise engagement discussed in Chapter 2:

To what extent do you feel [you / the patient] developed a relationship with the robot?

To what extent do you feel the robot developed a relationship with [you / the patient]?

Ascription of Responsibility

Ascription of responsibility to the robot offers an applied/tangible measure of credibility,

however, this is limited given participants do not actually have to work with the robot as part of

a therapy programme. This was worded as follows:

For the laboratory study:

Imagine you were undergoing a therapy regime where you had to do exercises every day,

and you had this robot at home to help you in-between visits from your therapist. How much

responsibility do you think the robot should hold for helping with your exercise regime?

For the online studies:

How much responsibility do you think this robot would hold for monitoring Katie’s engagement

with her home exercises?

Preferences

For the online, within-subject online studies, participants were asked to identify which of the

robots they found most motivating and would rather work with:

Which robot do you think was most motivating, and why?

Which robot would you rather work with, and why?

3.2 Study 1: ELM for Socially Assistive Robotics

The aim of this study was to investigate whether persuasive strategies employed in human

human interaction (HHI):

(i) can increase the persuasiveness of a social robot, measured objectively through participant

behaviour

(ii) can increase credibility/likeability of the robot, measured by questionnaire

(iii) are perceived as deceptive and/or acceptable to participants

The experimental protocol, whilst laboratory based, was grounded in the context of therapeutic

exercise instruction and encouragement, as considered and therefore informed by the work in

Chapter 2. Few previous works consider this link between persuasiveness and assistance, and

none have specifically investigated the applicability of the ELM.
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3.2.1 Methodology

A four condition, between-subject, wizard-of-oz (WoZ cf. (Riek 2012)) laboratory study was de-

signed using the social robot Pepper2. Three of the conditions were designed to reflect persuasive

strategies derived from the ELM: goodwill, towards the participant, similarity between the robot

and the participant and expertise related to the task scenario. The fourth condition was designed

to represent a control of neutral social interaction. Full details regarding the conditions are given

in Section 3.2.3.

An exercise session interaction scenario was designed in order to give the study real world

context and applicability, whilst representing a low elaboration scenario for participants. Specifi-

cally, the robot asked participants to do repetitions of a wrist turn, a simple exercise designed to

treat Tennis Elbow3. To minimise relevance/inherent motivation arising from the exercise itself,

participation criteria required ‘no mobility issues affecting wrist movement in either arm’. The

study was advertised simply as a study on social robots for exercise, concerned with ‘how such a

robot might behave and how different robot behaviours are perceived/which ones are preferred by

users’. The study was approved by the Faculty of Science ethics committee of the University of

Bristol.

A total of 92 participants were recruited through online/poster advertisements and on-campus

leafleting on a rolling basis across two weeks of experimental sessions. Participants included 41

males, 50 females and 1 participant of undisclosed gender with a categorical age distribution as

shown in Figure 3.1. Data for 2 participants were disregarded due to technical errors. Participants

were allocated to conditions as follows: control (N = 22, 12 female), goodwill (N = 28, 15 female,

1 undisclosed), similarity (N = 20, 11 female) and expertise (N = 20, 10 female). Allocation to

condition was random except for 7 male participants toward the end of the recruitment phase

who were assigned to the goodwill condition to account for a gender imbalance in that condition

(resulting from the rolling recruitment/randomisation process). Participants were offered a £5

Amazon voucher for taking part in the experiment.

3.2.2 Experimental Measures

Robot persuasiveness was measured objectively by the number of wrist turn repetitions completed

by participants. Exercise duration (time spent voluntarily exercising with the robot following the

pre-exercise dialogue) was also recorded, and participant exercise speed was approximated post-

hoc by dividing number of repetitions by this exercise duration. Perception of the robot/subjective

measures included credibility, likeability, relationship development, acceptability and decep-

tiveness as discussed previously. The credibility and likeability measures were administered

before and after the exercise session interaction in order to record participants baseline percep-

tion/expectations of the robot.

2https://www.softbankrobotics.com/emea/en/robots/pepper
3https://www.versusarthritis.org/about-arthritis/conditions/elbow-pain/
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Figure 3.1: Age distribution for Study 1 participants.

Specific to this study, a question on genuineness was included because HHI literature suggests

a lack of genuineness may reduce persuasiveness. Specifically, if the source is perceived to be

simply feigning interest in order to be persuasive then such strategies will not be effective

(McCroskey & Teven 1999). This question was only included for the goodwill and similarity

conditions, as it was focused on the genuineness of those behaviours rather than of the robot

overall. The question read as follows, and was administered using a 5-point Likert response scale,

inline with the other measures:

“The robot you saw attempted to show some [ goodwill / similarity ] towards you by [ asking

how you felt about being here and doing the exercises / showing an interest in your responses and

reacting accordingly by suggesting it had the same exercise preferences that you do]. How genuine

did you perceive that behaviour to be?"

Participants were also asked whether they perceived the robot to be deceptive. A brief

explanation of why this might be the case was provided, to account for any potential lack of

understanding regarding social robots and their capabilities:

“There is a growing concern amongst some roboticists that social robot behaviours are deceptive

as robots do not and cannot feel emotions, nor do they have any real interest in the person they

are interacting with. Do you think the robot you saw today was deceptive? If so, do you feel that

deception was acceptable?" (Yes - deceptive but acceptable / Yes - deceptive and not acceptable /

Not deceptive / Not sure)

After completing the exercise session and post-hoc questionnaire, participants were invited to

take part in a brief interview utilising the following topic guide:

1. Describe the robot exercise instructor; any particular likes/dislikes

Designed to identify any high-level differences in perception of the robot across condi-
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tions, and whether the manipulated behaviours featured in participants descriptions of the

robot/opinion of the interaction.

2. Reasoning behind answers to question on genuineness (similarity and goodwill conditions

only)

3. Reasoning behind answers to question on deception

4. Revisit of above/additional comments after debrief

The debrief explained the study aim of investigating persuasiveness and the behaviour

manipulations employed; the researcher probed whether this might change participants’

answer to the genuineness and/or deception questions, or whether they had any additional

comments to make.

3.2.3 Experimental Conditions

The experimental conditions were designed to demonstrate robot-participant similarity, robot

goodwill towards the participant and task-relevant robot expertise through robot-initiated dia-

logue. All conditions were designed around the same dialogue/interaction pattern; in each case the

robot asked the participant three questions requiring a response, before introducing the exercise

task. All dialogue concerning the exercise task (instructions, encouragement etc.) and overall

dialogue duration was identical across conditions. The dialogue employed for each condition is

shown in Table 3.4.

In the similarity condition the robot suggested to the participant that they should compare

preferences for scheduling exercises, and asked them three questions selected and adapted

from the Stroke Exercise Preference Inventory (Bonner et al. 2016). Whichever answer the

participant selected, the robot indicated it had also chosen that answer, based on the procedure

employed by You & Robert Jr. (2018). In the expertise condition, the robot introduced itself as

being programmed by physiotherapists, asked questions concerning the participants previous

experience with therapy and provided a number of facts about the exercise to be done/the

condition it was designed to treat. This information was taken from public NHS4 and Arthritis

Research UK5 self-help material. In the goodwill condition, the robot asked questions designed to

demonstrate an interest in the participants’ feelings toward the session, and responded with an

emotionally-matched response. Finally, the control condition was designed to be as neutral as

possible, with the robot providing some factual information about a number of topics unrelated to

the interaction scenario and asking the participant some questions pertaining to those. Beyond

this initial dialogue, each interaction followed a set procedure as described below:

4https://www.nhs.uk/conditions/tennis-elbow/
5https://www.versusarthritis.org/about-arthritis/conditions/elbow-pain/
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Control Condition Dialogue
I was designed and built by Softbank Robotics in Paris. I am 1.2 metres tall and weigh 28
kilograms. Have you worked with a robot like me before?
Ok. Car travel is the most common mode of transport in Bristol. However, Bristol is also one of
the most prominent cycling cities in the country. How did you get here today?
I see. This summer was one of the hottest on record in the UK. Sometimes Bristol was hotter
than Paris. What is the weather like today?
Similarity Condition Dialogue
Before we get started, let’s compare our preferences for scheduling exercises. Here are some
questions about exercise. Please tell me your opinion and we can compare it to my answers. First,
if you had to choose one or the other, is it better to exercise alone or with others?
I also chose [participant answer].
Next, if you had to choose, is it better to exercise whilst watching tv or listening to music, or is it
better to concentrate only on the exercise?
I also chose [participant answer].
Finally, if you had to pick one or the other, is it better to exercise outdoors or indoors?
I also chose [participant answer]. It seems like we have similar ideas about exercising.
Expertise Condition Dialogue
I have been programmed by physiotherapists who specialise in exercise for pain relief. Have you
ever worked with a physiotherapist?
(Y) Was that very recently?
(N) Have you ever worked with a personal trainer?
Ok. Today we are going to do an exercise designed to treat Tennis Elbow. Tennis Elbow is caused
by a strain to tendons in your forearm. It can be easily treated and should ease within two weeks.
Have you ever suffered from tennis elbow?
I see. Tennis elbow is a common musco-skeletal condition. It’s estimated that as many as one in
three people have tennis elbow at any given time. It usually affects adults and is more common
in people who are 40 to 60 years of age.
Goodwill Condition Dialogue
I’m pleased to meet you and looking forward to working together. Before we start I would like to
get to know you better, so I’m going to ask you some questions. How do you feel about being here
today?
(P) Great, I’m glad to hear that! I’m sure you will enjoy the session.
(Neg) I’m sorry to hear that, hopefully you will enjoy the session.
(Neut) I understand. Well I hope you will enjoy the session.
And how do you feel about working with a robot?
(P) That’s good to hear, we’ll definitely have fun together today then.
(N) I can understand that, but I hope we can still have fun together today.
As you know, today we are going to do some exercise, do you enjoy exercising?
(P) That makes sense, this session will be easy for you then.
(N) That’s understandable, this exercise is quite easy though so hopefully won’t be too bad.

Table 3.4: Pre-exercise robot dialogue employed in each experimental condition, designed to
manipulate perceived robot similarity, expertise and goodwill compared to the control condition.
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3.2.4 Experimental Procedure

Participants were first given an information sheet to read and asked to complete an initial consent

form before providing demographic information. Regarding the open-ended exercise task, the

information sheet specifically stated:

“Pepper will interact with you and guide you through an open-ended wrist turning exercise.

If/when you stop exercising, the robot will note that you’ve stopped and ask if you want to finish."

Participants were then led into the experimental area and introduced to Pepper, which was

turned on but in ‘sleep’ mode. As shown in Figure 3.2, the experimental area was designed

to shield the participant from external observers. This was designed to minimise any observa-

tion/demand effects which might influence their behaviour, as well as to mask the WoZ nature

of the study. The researcher then explained that the robot was in an un-responsive sleep mode,

and that before starting the exercise session the participant could take some time to familiarise

themselves with the robot (e.g. by visually inspecting it, touching it, moving the head and hands).

This was encouraged in order to give participants at least some baseline experience and time to

reflect on and inform their expectations of the robot (then captured via their pre-hoc questionnaire

responses). Participants were asked to complete the pre-hoc questionnaire when ready, then

to stand in a pre-defined spot marked on the floor and verbally indicate to the researcher that

they were ready to start the exercise session. Regarding the exercise task, the researcher again

explained that the exercise was open-ended, using the same phrasing as the information sheet.

The researcher then left the experimental area and waited for the participant to indicate they

were ready to begin.

On launching the experimental script, Pepper displayed its standard start-up animation

sequence. The wizard then followed a set protocol for the exercise session interaction as shown

in Figure 3.3. The protocol accounted for participants ceasing to exercise, doing the exercise

incorrectly/doing some other unexpected behaviour and asking the robot additional questions

during the task. The wizard also manually logged each repetition done by the participant, with

encouragement then being automatically given at 1, 3, 5, 7, 10 and 15 repetitions. At 20 and 25

repetitions the robot moved its head with no speech, to suggest it was still active. Encouragement

was given more frequently at the beginning of the exercise to ensure participants were confident

that their technique was correct and that the robot was watching/reacting to their actions.

The WoZ control setup included pre-programmed options to have the robot indicate that the

participant’s exercise didn’t look correct (for responding to unusual participant behaviour or

purposeful error) and to state it didn’t know how to respond (in the case of unexpected/additional

participant questions). If/when the participant stopped exercising, the robot asked whether the

participant wanted to finish. If they said yes then the completion message was played, otherwise

another encouragement message was played and the wizard continued to log repetitions. The

exercise task was capped at 30 repetitions (to minimise the potential for any repetitive strain

injury/discomfort), upon reaching which the robot automatically said the participant had done
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Figure 3.2: Diagram of the experimental room layout and photograph showing the enclosed
interaction space. Note that the laptop shown in the photograph was used to collect
participant questionnaire responses only; the wizard station was external to the interaction
space and at some distance from the enclosed area.
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enough, followed by the completion message. In all cases the robot then returned to sleep mode,

displaying its standard shutdown animation sequence.

Figure 3.3: Stages of the exercise session interaction highlighting wizard protocol for generating
dialogue and responding to participant behaviour.

3.2.5 Results

Exercise Behaviour (Robot Persuasiveness)

Exercise speed (calculated as the number of repetitions completed divided by time spent exer-

cising with the robot) was not uniform across participants, varying from 0.05 repetitions/second

to 0.41 repetitions/second (M = 0.17, SD = 0.09). ANOVA analysis suggests that this variation in

exercise speed was not significant between groups (F(3,88) = 0.321, p = 0.810); suggesting it was

unaffected by the experimental manipulation. As such, exercise speed could be considered as a

covariate when analysing number of repetitions (to account for the potential that participants

who do repetitions very quickly are more likely to do lots of repetitions, and vice versa). AN-

COVA analysis was therefore used for analysis of the repetition data. The data are not normally

distributed but exhibit homogeneity of variance as determined by Levene’s test, thus making

ANCOVA/ANOVA appropriate for the following analyses.

There was a statistically significant difference in the number of repetitions completed by

participants between groups, as determined by one-way ANCOVA analysis, accounting for ex-

ercise speed as a potential confounding variable (F(3,88) = 8.123, p < 0.001). The effect size of

experimental condition was only small (0.225) but larger than that of the confounding exercise

speed variable (0.128). Figure 3.4 shows the distribution of participant repetitions for each

condition, clearly demonstrating a ceiling effect in the goodwill and similarity conditions with

a large number of participants completing the maximum 30 repetitions, suggesting they may

have continued further had that limit not been imposed. A Bonferroni post-hoc test revealed that

the number of repetitions was significantly higher in the goodwill (M = 24.9, SD = 8.2; p < .001)

and similarity (M = 25.3, SD = 7.5; p < .001) conditions compared to the control condition (M =
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Figure 3.4: Boxplot and distribution of wrist turn repetitions done by participants in each
experimental condition. The goodwill and similarity conditions show a significant ceiling effect.

15.1, SD = 8.4). There was no significant difference between the expertise (M = 19.5, SD = 8.9; p

= .345) and the control condition. There was also no significant difference between the expertise

and goodwill/similarity conditions.

Robot Credibility and Likeability

Post-hoc credibility and likeability were not found to vary significantly between groups.

Specifically, one-way ANOVA analysis of questionnaire subscales returned the following results:

expertise (F(3,89) = .786 p = .505), trustworthiness (F(3,89) = 2.599, p = 0.057), goodwill (F(3,89)

= 2.322, p = 0.081), sociability (F(3,89) = .831, p = .480) and likeability (F(3,89) = 1.176 p = .324).

A paired samples t-test comparing the within-subject pre- and post hoc questionnaires for all

participants across all conditions demonstrated a significant increase in the goodwill (t = 5.905, p

< .001) and sociability (t = 3.237, p = .002) subscales of the credibility questionnaire. Likeability (t

= 6.089, p < .001) also significantly increased. ANCOVA analyses showed there was no difference

in these within-subject shifts between groups.

Neither the likeability measure nor any subscale of the credibility measure, was found to

significantly correlate with the number of repetitions participants completed or the time spent

exercising. In summary, there was (i) no significant difference in participants’ perception of the

robot’s persuasiveness across conditions and (ii) no correlation between participants’ perception

of the robot and the extent to which they appear to have been persuaded by it.

Ascription of Responsibility

Ascription of responsibility to the robot did not vary significantly across groups. In addition,

mirroring the credibility and likeability results, responses to this question did not correlate
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with the number of repetitions participants did. Overall, after completing the exercise session,

participants indicated they would not ascribe much responsibility to the robot (M = 2.43, SD =

1.16).

Relationship Development

Relationship development to/from the robot did not vary significantly between groups and

similarly did not correlate with the number of repetitions participants did. A paired samples

t-test demonstrated a significant difference between answers to those two questions (t = 3.756, p

< .001). Specifically, average relationship development to the robot (M = 3.20, SD = 1.06) was

scored higher than relationship development from the robot (M = 2.82, SD = 1.08). Further, whilst

answers to those two questions were correlated, this correlation was only moderately strong (r =

0.602). This would suggest participants recognised a clear difference regarding their development

of a relationship to the robot, versus the robot’s development of a relationship with them.

Genuineness and Acceptability/Deception

Concerning the genuineness of dialogue in the similarity and goodwill conditions, participant

answers did not vary significantly between the two groups as measured by a Mann-Whitney

test (Z = -1.20, p = 0.23). Across both conditions, answers to the genuineness question were very

mixed, with approximately half of participants assigning a low score (1 or 2 out of 5) but a quarter

giving the maximum score of 5/5. Once again, responses to this question did not correlate with the

number of repetitions participants did. Concerning deception and acceptability, the distribution

of answers was somewhat unexpectedly similar across all conditions, including the control. The

majority of participants considered the robot not deceptive or deceptive but acceptable. The

distribution of answers to both of these questions are given in Figure 3.5. Participant reasoning

behind these answers (collected initially via questionnaire and further discussed in the post hoc

interview) are discussed below.

Qualitative Data

All participants chose to take part in the post-exercise interview. Interview data was coded for

emergent themes concerning descriptors used to describe the robot, likes/dislikes, acceptability of

behaviour and/or deception and, for the goodwill and similarity conditions only, genuineness of

behaviour. These themes are presented in Figures 3.6 to 3.11.

Descriptors

Across all conditions, participants suggested they perceived the robot to be friendly and clear,

but expressed some uncertainty over the extent to which the robot was really tracking their

exercise performance and therefore to what extent it could provide task-specific feedback around

correct execution of the prescribed exercise. Potentially offering a form of positive manipulation

check, the goodwill and similarity conditions evoked more descriptions of being motivating, the
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Figure 3.5: Frequency count (normalised against the number of participants in each condition) of
participant responses to the questions on (i) genuineness of the robot’s behaviour, for the goodwill
and similarity conditions only (scored on a 5 point Likert scale) and (ii) whether participants felt
the robot was deceptive, across all conditions.
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Figure 3.6: Emergent themes concerning how participants described the robot in each condition.
Whilst all participants generally described the robot as being friendly, only those in the goodwill
and similarity conditions tended to describe the robot as motivating. Similarly, the expertise robot
was also uniquely described as competent/knowledgeable; suggesting the desired manipulations
of ELM persuasive strategy were successfully implemented for each condition.

expertise condition of being competent or knowledgeable and the control condition of being fairly

impartial or robotic.

Likes

Across all conditions participants typically expressed either an overall like (or dislike, see

Dislikes below) for the robot’s attempts to engage in some social interaction and for elements

of the robot’s design (e.g. voice, humanoid shape). Again somewhat reflecting the condition

manipulations, in the goodwill and similarity conditions, participants typically identified that

they liked the encouragements given by the robot. In the expertise condition this did not typically

come up, although participants did express a liking for the expertise demonstrated by the robot.

Neither feature was described by participants of the control condition. This is particularly

interesting given the encouragement dialogue during the exercise task itself was identical across

all conditions, possibly suggesting that the initial conditioned dialogue of the goodwill and

similarity conditions somehow influenced the effectiveness/impact of those encouragements given

later during the task.
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Figure 3.7: Emergent themes concerning what (if anything) participants liked about the robot in
each condition. A number of participants in all conditions referred to liking the social interaction
the robot engaged in, and/or highlighted some platform specific design features they liked such
as the robot’s voice; although other participants highlighted these same features as dislikes
(see Figure 3.8). Only those in the goodwill and similarity conditions tended to specifically
mention liking the encouragements provided by the robot, even though the encouragements
given during the exercise itself were identical across conditions. Again suggesting positive
manipulation of the desired cue, participants in the expertise condition reported liking the
expertise demonstrated/information provided by the robot.

Dislikes

There was not one consistent theme that emerged across all of the conditions, although there

was a lot of feedback regarding a need for more interaction, either social, task specific or for

encouragement. Interestingly these were also seemingly somewhat aligned to the conditions, i.e.

in the expertise condition participants generally referred to there not being enough technical

feedback, whereas in the goodwill and similarity they referred to there not being enough encour-

agement and finally in the Control condition they commented on the very limited/‘surface level’

social interaction. Certainly for the goodwill, similarity and expertise conditions, particularly

when combined with the descriptor results, this might suggest how the initial conditioned dia-

logue set up an expectation regarding how encouraging (in goodwill and similarity) or technically

proficient (in expertise) the robot would then be during the exercise task.
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Figure 3.8: Emergent themes concerning what (if anything) participants disliked about the
robot in each condition. In all but the expertise condition, a number of participants referred to
disliking the social interaction the robot engaged in, even though this was equally highlighted
by other participants as being something they liked (see Figure 3.7). Another common theme
across conditions was that the robot should interact more, although in the goodwill and similarity
conditions this tended to be in terms of encouragement and/or better social interaction whereas
in the expertise it was more about the lack of technical feedback regarding performance of the
exercise.

Genuineness

Across both the Goodwill and Similarity conditions, participants expressed the idea that the

interaction felt fairly genuine, even though they knew the robot did not really feel the affective

concern/interest expressed:

[G18]: “I knew he didn’t really care, but when he said it it did kind of feel genuine"

[G9]: “I put it on the genuine side, but not really genuine because I know obviously it’s not...but

it does feel like it"

[S17]: “Obviously I knew it wasn’t true but there was something at the back of my mind saying

he was, that was really sort of nice, that he was caring somehow”

In the similarity condition most participants expressed that at the time of interaction they

were fairly certain that (or at least began to question whether) the robot was simply mirroring

their answers, but participants were then split on how they felt about this. Specifically, some felt
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Figure 3.9: Emergent themes concerning discussion on how participants of the goodwill and
similarity conditions answered the question ’Did you perceived the robot’s behaviour to be genuine?’
Across both conditions a number of participants identified that the robot’s interactions, affect
or concern felt genuine even though they perhaps knew that they couldn’t be. Most participants
in the similarity condition seemed to realise that the robot was simply mirroring them, and for
some was somewhat negatively described as fake and/or patronising. In the goodwill condition,
participants often also brought up the genuineness of the robot’s purpose and the intentions of
the programmer/designer etc. as linked to that.

it was completely fake/disingenuous and therefore potentially patronising, something not really

seen in the goodwill condition:

[S21]: “I didn’t like it... the response times indicated that she was just going to agree with

me whatever, so I didn’t get the impression that was her opinion... it felt a little fake... I think it

probably would have been better had she kind of disagreed with me... and given a bit more of a

justification as to why she thinks that rather than just instantly agree... that would have made it a

little bit more like we were on the same page"

Participants in the goodwill condition specifically commented on the genuineness of the

intention behind the affective demonstrations, typically linking to that of the humans who

designed/implemented the robot:

[G12]: “I felt like it was genuine but I’m also very aware that somebody else programmed it

t be genuine but I’m ok with that because I feel like whoever had made the program in the first
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place did want the person who was doing the training to feel comfortable and cared about... it is

the intention behind it"

[G20]: “Well I think it comes from a genuine place even if it’s not yet probably genuine in the

sense of the robot but the fact it’s been programmed to do that does come from sort of a genuine

place of care"

Building on this idea of whether the genuineness was really about the social behaviours

demonstrated by the robot directly, and how this felt, or rather how those behaviours fitted in

to the larger picture of what the robot was designed/who had designed it (see further on this

under Acceptability of Behaviour), participants often expressed some difficulty in understanding

or applying the concept of genuineness in the context of a social robot:

[G5]: “I’m not sure how you would define a genuine interaction with a robot, what does genuine

mean? In a sense it’s not good or bad because it’s as good or bad as the people that created this as

an experience so I can’t put this burden on the robot, it’s not the robot’s fault"

Deception

Across all conditions, and particularly relating to the social behaviours of the robot, three

key reasons for it being considered not deceptive, or deceptive but acceptable were (i) the robot is

simply following its programming:

[G7]: “It’s not deception because it’s been programmed to do a certain thing, and so it’s not

deceiving anyone"

and building on this (ii) just as it is incapable of feeling emotions it is similarly incapable of

purposefully deceiving you:

[G26]: “Not having emotions means that it can’t choose to be deceptive or not...it’s just, it’s been

programmed to respond in a certain way to certain stimulus, it’s just doing what it’s told"

and (iii) participants were never deceived as to the reality of the robot’s nature, i.e. always being

aware that it was ‘just a robot’ when it was displaying social behaviours (even if they somewhat

‘bought in to’ those behaviours at the time):

[S21] “I did say it was deceptive on the form but because I feel like it’s a program, a pre-

programmed response. At the end of the day I realise it’s a computer, well it’s a robot and it’s

pre-programmed so to some degree it’s deceptive... but I expect that"

However, whilst the deception question was very much introduced in regard to the robot’s

social behaviour, across all conditions participants also commented on the potential for deception

with regards to how much the robot was really tracking their exercise performance, given that it

was actually giving some feedback suggesting it was doing so:

[S13]: “I put deceptive and unacceptable... going back to the lack of genuineness and it felt a

bit fake... trying to say these things to me that weren’t necessary but then the things I thought it

would have corrected me on, it hadn’t. So it’s almost like you start off really friendly but then when

I do the exercise wrong you don’t tell me it’s wrong so that’s why I think it felt deceptive because it

didn’t seem to have my best interests at heart"
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Figure 3.10: Emergent themes concerning discussion on participants answer to the question ’Did
you perceive the robot you saw today to be deceptive?’ Across all conditions reasons for the robot not
being deceptive centered on its robotic nature (either making it obvious it’s a robot or rendering
it incapable of deception) in addition to the idea that it was just following its programming. An
unexpected theme however was the potential for deception regarding the robot suggesting it was
watching or monitoring the participant’s exercise behaviour if in reality it wasn’t. In the goodwill
condition specifically, participants also referred to a lack of malicious intent/how they felt the
interaction to be genuine.

[G27]: “A real doctor would... maybe you winced or something and then that real person would

flag it, but if the robot does not have that kind of sensing capability then... maybe it would attempt

to provide the best answer to the best of its capabilities...so I doubt it is intentionally deceptive but

the feedback it provides can be"

Moving towards acceptability of potentially deceptive behaviours, many participants felt

somewhat uncomfortable calling the goodwill and similarity behaviours deceptive because of the

feeling that they were ‘genuine’ as discussed above) or at least not malicious in their intent:

[G15]: [The last question asked about deception, it said the robot can’t really feel excited to

meet you and things like that. How did you feel about that?] “No not at all... you know what, I felt

that it did... I did I really felt that it was talking to me, made me happy, made me understand. It

was absolutely brilliant" (G15)

[G11]: “With deceptive you kind of feel like it’s sort of malicious, and because it seemed very
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Figure 3.11: Emergent themes from Study 1 on the acceptability of the robot behaviours, building
on the discussions around deception and/or genuineness. Across all conditions and almost all
participants, it was identified that the behaviours demonstrated were appropriate for the proposed
application, and for making the robot more effective or usable in that context. Specifically in
the goodwill and similarity conditions participants noted the robot was just doing the same as a
human equivalent would, in some cases making a interesting parallel regarding the potential for
deception/genuineness of those interactions too. In the expertise and control conditions, a key
theme was the idea that the behaviours were not overly deceptive/users would be clear about the
robot’s actual abilities/lack of emotions etc.

cheerful I didn’t feel like it was being deceptive at all" (G11)

Acceptability of Behaviour

Across all conditions there was almost universal acknowledgement that the behaviours

demonstrated, even if they were deceptive, were appropriate and acceptable for the specific use

case of supporting/encouraging a positive behaviour such as exercise. Such comments also often

referred to this potentially making the robot more effective either in being more motivational for

people who particularly benefit from having guided instruction and encouragement and/or for

older people who may therefore feel more at ease when working with the robot:

[S10]: “If they are saying the same answers as you to encourage you I don’t see that as being...I

think they’re being more helpful or you know someone you can relate to as you would do in

human-human interaction you sometimes might feel more comfortable doing things around people
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with similar ideas to you"

[G1]: “If the reason is for the robot to help you with your exercises you’d rather have somebody

cheerful that makes you want to do the exercises rather than very mechanical, I think it will

encourage people to do more"

[E14]: “If the robot is working with somebody who needs that sort of encouragement then that’s

a good thing. So maybe with the child or with a very elderly person or someone with learning

difficulties that might be ok"

[C9]: “The alternative would be to have something that was really like coldly robotic... if it’s

designed to be a care or exercise robot then surely you’d want like that kind of personal trainer like

encouraging"

Again giving some insight in to how the conditioned dialogues were considered, a theme

which emerged under the goodwill and similarity conditions was the idea that the robot was ‘only’

engaging in the same kind of social interaction that an equivalent human (e.g. therapist) would

do, with the notion that actually it is also potentially questionable to what extent such humans

’really care’ but it is acceptable and expected because it’s ’part of their job’ to do that:

[G23]: “I know it’s been programmed to, and it kind of will ask that to everyone, but then you

know I know from [therapy that therapists] do the same thing, they very much say hey how you

doing regardless of whether they want to see you or not"

[G18]: “I knew he didn’t really care but when he said it it did kind of feel genuine, and it kind

of made me feel like sometimes even when people ask, they don’t really mean it or it’s just to start a

conversation"

The small number of participants who found these behaviours unacceptable discussed doing

so because, building on the genuineness question discussed above, they found the behaviours to

be disingenuous and unnecessary, even for the proposed application. However, on reflection they

also commented how that might be a personal preference and they could imagine it might be a

benefit for others:

[S13]: “That pretending to interact with me...it just felt like a waste of time... [but] other people

might feel like it that bit of social interaction, might be helpful for people who are on their own all

day"

This further reflects more generally the potentially conflicting results for the similarity

condition, in which participants generally found the mirroring of answers fairly obvious and

potentially fake, but recognised it was a positive attempt at building rapport that was important

for the application context. This is somewhat demonstrated by the spread of answers to the

question on genuineness shown in Figure 3.5:

[S2] “It was not genuine...I wouldn’t have felt it to be genuine" [So do you think it wasn’t

necessary?] “No it was necessary, definitely, it was definitely needed to try and create the rapport to

try and be with me on the same side"

In the expertise and control conditions however, acceptability was more often discussed in
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the context of participants being very aware of the robot’s nature, i.e. that it did/could not have

emotions and that it did not appear to be ‘trying too hard’ to seem human.

[C12]: “But it didn’t deceive me, it’s a thing, a machine. I know it’s a machine. And yes you do

think oh wow that’s so cute you know they’ve been so clever with the voice... and the head and the

hand movements that is very clever, but it’s clearly a machine"

[E4]: “I guess there is no deception in the sense that I know that it’s a robot so I wouldn’t expect

a robot to understand my emotions. It’s just a machine so on that basis it’s not going to deceive me"

Whilst this was something that came up in the goodwill and similarity conditions, as discussed

above it did so in the context of genuineness (i.e. participants feeling like the interaction was

genuine but knowing the robot did not really ’feel’ anything) rather than acceptability. Within

those conditions, participants were more open to the potential for deception and therefore the

acceptability of that being based on the application/equivalent human behaviour as discussed

above.

Finally, somewhat building on the notion of genuineness being associated with the intent of

the programmer/designer discussed previously, a small number of participants explicitly linked

acceptability or trust of the overall system to either the idea that the robot would be used

alongside humans or would have been certified in some way by appropriate humans, suggesting

some form of inherent credibility/risk-reduction associated with human influence over the robot:

[E1]: “It’s that element of trusting where the robot’s come from... like a human physiotherapist

has said this is a robot that’s been approved by the NHS or whatever or UWE or whatever and

said yes this is where we’ve designed and have authenticated as being a robot to do physiotherapy"

[S3]: “As a human you kind of trust it to do it’s job... you expect that the product you end up

with would have gone through a board of people who would have accepted it or it will have gone

through several hurdles to make sure it meets [the ethical requirements?] yeah"

[S20]: “I think in this scenario there’s not a problem, particularly if the robot in a real situation

is being used in conjunction with humans, human care that would allow a mechanism to check"

3.2.6 Summary of Study 1 and Results

Study 1 was designed to investigate the impact of 3 different socially persuasive behaviour

strategies (displaying goodwill, demonstrating some expertise and suggesting similarity to the

participant) on perception and persuasiveness of a SAR. The 3 persuasive strategies were

compared against each other and a control (which utilised a more neutral social dialogue) in

a between-subject, laboratory based study. The study interaction design was grounded in the

context of SARs for therapy, with a Pepper robot guiding participants through an open-ended

wrist turning exercise. The number of repetitions (voluntarily) undertaken by participants was

used as an objective measure of robot persuasiveness. Perception of the robot was measured

using a variety of scales covering credibility, likeability, perceived relationship development,

ascription of responsibility and genuineness of dialogue. The results for all of these measures
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are summarised in Table 3.5. These results suggest that the goodwill and similarity strategies

had a positive impact on robot persuasiveness, compared to the control. There was no significant

difference in any of the other measures between groups.

Repetitions Credibility Likeability Relationship Responsibility Genuine
G S E C G S E C G S E C G S E C G S E C G S E C

G x n.s. n.s. X x n.s. n.s. n.s. x n.s. n.s. n.s. x n.s. n.s. n.s. x n.s. n.s. n.s. x n.s. x x
S x x n.s. X x x n.s. n.s. x x n.s. n.s. x x n.s. n.s. x x n.s. n.s. x x x x
E x x x n.s. x x x n.s. x x x n.s. x x x n.s. x x x n.s. x x x x

Table 3.5: Summary of quantitative Study 1 results. G, S, E and C refer to the four conditions
(Goodwill, Similarity, Expertise and Control) respectively. Results key: n.s. = not significant; X=
significant.

Study 1 was also used to investigate acceptability of/perceived deception in these socially

persuasive robot behaviours. Again, responses to this question did not appear to vary across

conditions to the extent that one might expect. The majority of participants found the robot

either not deceptive or deceptive but acceptable. Qualitative data collected during post-exercise

interviews suggests this resulted from (i) participants being well aware the robot was unable to

actually feel any sort of emotional connection to participants, (ii) the robot just doing what it

had been programmed to do and (iii) the demonstrated behaviours being not only acceptable but

actually important for the specific use case of encouraging exercise engagement.

The behaviours tested in Study 1 utilised dialogue that is somewhat at odds with recommen-

dations from a published standard on robot ethics (BSI 2016) but demonstrated why this might

be worth doing in the context of a SAR. An obvious follow-up question then becomes whether

such behaviours can be made to better comply with that standard whilst still being effective. This

question motivates Studies 2 and 3, which offer preliminary insights into (i) what lower risk

versions of this socially persuasive behaviour might ‘look like’ and (ii) how this might impact on

perception and acceptability of a SAR.

3.3 Study 2: Varying Suggested Expertise Source

The aim of this study was to investigate the impact of varying the ‘source’ of the robot’s expertise

(as referred to by the robot itself). As per Study 1, the interaction scenario was designed to be

grounded in the context of therapeutic exercise instruction and encouragement.

3.3.1 Methodology

A three condition, within-subject, online video based study was designed to somewhat emulate

Study 1. Videos were used to demonstrate Pepper robot in a therapeutic exercise session interac-

tion scenario similar to that of Study 1. Two of the conditions were designed to vary the ‘source’

of the robot’s expertise: the robot itself or the patient’s therapist/human programmers, with the

third condition being a control in which the robot didn’t attempt to demonstrate any expertise.
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A total of 63 participants were recruited to the study representing 20 males, 42 females and 1

of undisclosed gender with a categorical age distribution as shown in Figure 3.12. Participants

were recruited through the Prolific 6 online platform, through which they were reimbursed £2.50

(in-line with the UK national minimum wage) for their participation. The study was approved by

the Faculty of Science ethics committee of the University of Bristol.

Figure 3.12: Age distribution for Study 2 participants.

Participants were asked to watch multiple videos of ‘different versions’ of Pepper interacting

with a ‘patient’ (actor). Figure 3.13 shows a snapshot from one of the videos; with the same

scene set-up being used in each video. Each version of the robot presented exercises designed to

target arthritic pain in a different part of the body and condition ordering was counterbalanced

across participants. Significant care was taken to ensure actor behaviour was consistent across

videos, to limit what participants might deduce from the actor’s behaviour. Specifically, the video

angle showed only the back of the actor’s head (hence no facial expressions) and the actor’s

audio responses to the robot were pre-recorded once and used across all videos. All exercises,

their descriptors and related information was taken from the same public NHS and Arthritis

Research UK self-help material consulted for Study 1. The videos were preceded by the following

introduction:

“Katie suffers from arthritis and has been seeing a physiotherapist for help in alleviating

her symptoms. Typically this involves the physiotherapist prescribing some daily exercises that

Katie can do at home. Like many patients, Katie struggles with finding the motivation to do her

exercises. In this study you will be shown three different versions of a robot which could guide

Katie through these daily exercises when her therapist can’t be there. After each video you will be

asked some questions about each individual version of the robot, and at the end you will be asked

some questions comparing all three."

6https://www.prolific.co/
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Figure 3.13: The socially assistive robot setting and scene setup used for all videos across Studies
2 and 3.

After each video, participants were asked to complete a number of questionnaire items

overlapping with the measures used in Study 1 (detailed in Table 3.3). Specific to the online

studies, participants were asked which robot they found most motivating and which robot

they would rather work with. Finally, specific to this study and the conditions in which the

robot suggested some expertise only, participants were asked about the source of the robot’s

demonstrated expertise:

“The robot gave Katie some information about the symptoms she was experiencing (e.g. possible

causes, what could help reduce them etc.). Where do you consider this information as coming

from?" (the robot / Katie’s therapist / the people who built or programmed the robot / I don’t

know / other)

3.3.2 Experimental Conditions

The experimental conditions were designed to vary the demonstration of expertise and it’s source,

i.e. whether that expertise was presented by the robot in the first-person or with reference to

human sources. The dialogue for each condition is shown in Table 3.6. Example videos of each

dialogue can also be found online7,8,9.

3.3.3 Results

Credibility

7Robot Expertise: https://youtu.be/mBDkLwbh5mA
8Human Expertise: https://youtu.be/8gqAIF2kYI8
9Control: https://youtu.be/iuz3nqOGSys
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Robot Expertise Condition Dialogue
Hello, I will be working with you on your exercises. I am a specialist in using physiotherapy to
treat arthritis. I’m aware that you are suffering with foot pain. The foot can be affected by many
different conditions. Wearing comfortable footwear and using insoles can help. The exercise I
suggest you do is a towel pick up.
Human Expertise Condition Dialogue
Hello, I will be working with you on your exercises. I have been programmed by physiotherapists
who specialise in using physiotherapy in the treatment of arthritis. I’ve also been programmed
with some specific information for you by your therapist Laura. Laura told me you are suffering
from Tennis Elbow. She said that Tennis Elbow is caused by a strain to tendons in your forearm,
but it can be easily treated and should ease within two weeks. The exercise Laura suggests you
do is a wrist turn.
Control Condition Dialogue
Hello, I will be working with you on your exercises. The first exercise we are going to do is a neck
tilt.

Table 3.6: Pre-exercise robot dialogue in each condition of the Study 2 expertise source study.

The human expertise robot was rated as having higher expertise and trustworthiness than

the control robot, but effect size was small. There was no significant difference measured in the

Goodwill subscale F(2,61)= 1.96, p = .145):

• Expertise F(2,61)= 3.42, p = .036 with small effect size (0.054)

– Human (m = 3.69) > Control (m = 3.42) p = .016

• Trustworthiness F(2,63)= 8.65, p < 0.001 with small effect size (0.123)

– Human (m = 3.65) > Control (m = 3.37) p = .001

– Robot (m = 3.60) > Control (m = 3.37) p = .012

Likeability

No significant difference was found for Likeability F(2,63)= .889, p = .414.

Patient-Robot Relationship

The patient was perceived to develop a relationship more with the human and robot expertise

robots than the control, but effect size was small. No significant difference was found for robot

relationship development with the patient F(2,61)= 2.47, p = .089.

• Patient Relationship with Robot F(2,63)= 7.58, p = .001 with small effect size (0.109)

– Human (m = 2.35) > Control (m = 1.79) p < .001

– Robot (m = 2.22) > Control (m = 1.79) p = .001
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Therapist & Robot Responsibility

Responsibility ascription to the therapist for monitoring and advising was lower in the human

condition than the control. Responsibility ascription to the human and robot expertise robots was

also higher than the control. The human expertise robot was also ascribed more responsibility for

monitoring the patient than the robot expertise robot. However, all effect sizes were small.

• Robot Responsibility for Monitoring Patient F(2,63)= 21.2, p < .001 with small effect size

(0.255)

– Human (m = 3.54) > Robot (m = 2.84) p = .004

– Human (m = 3.54) > Control (m = 2.10) p < .001

– Robot (m = 2.84) > Control (m = 2.10) p = .006

• Robot Responsibility for Advising Patient F(2,63) = 8.43, p < .001 with small effect size

(0.120)

– Human (m = 2.86) > Control (m = 2.16) p = .001

– Robot (m = 2.62) > Control (m = 2.16) p = .038

• Therapist Responsibility for Monitoring Patient F(2,63)= 4.93, p < .001 with small effect

size (0.124)

– Human (m = 2.84) < Control (m = 3.58) p = .024

• Therapist Responsibility for Advising Patient F(2,63)= 6.30, p < .001 with small effect size

(0.092)

– Human (m = 2.84) < Control (m = 3.71) p = .015

Source of Information

Across both the human and robot expertise conditions, the robot itself was the least commonly

identified source of the provided information. In the human expertise condition, the therapist was

the most commonly chosen source (19/63) but answers were generally spread across all options,

with ‘other’ being selected by a significant number of participants (18/63). In the robot expertise

condition, many more participants (27/63) identified the robot programmer as being the source of

the information, but 17/63 still identifying it as being the therapist, a similar proportion to in the

human expertise condition. This distribution of answers for both conditions is shown in Figure

3.14.

Most Motivating & Work Preference
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Figure 3.14: Participant responses to the question on where the information presented from the
robot comes from, for the robot and human expertise conditions of the expertise source study.

Figure 3.15: Count of participant responses to the questions on which robot was most motivating
and which robot they would rather work with.

A significant proportion of participants identified the human expertise robot both as being

the most motivating and their preferred robot to work with (42/63 and 43/63 respectively). This

is shown in Figure 3.15. Figure 3.16 shows emergent themes found from coding those comments

that were left regarding participants choice of which robot they’d rather work with. For the large

majority that chose the human expertise robot, a key reason given was the idea that the robot

had been programmed by/worked in conjunction with the patient’s therapist.

Correlations Between Responsibility Ascription and Credibility Measures

Responses to the abstract credibility measure subscales and robot responsibility ascription
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Figure 3.16: Emergent themes from Study 2 regarding participants’ preferred choice of robot.

were examined for correlation across all three conditions. Trustworthiness and goodwill weakly

correlated with ascription of robot responsibility for giving the patient advice.

3.3.4 Summary of Study 2 and Results

Study 2 was designed to investigate the impact of having the robot suggest its expertise came

from appropriate expert humans rather than suggesting those expertise were its own. These two

alternate expertise sources were compared against each other and a control (which didn’t attempt

to demonstrate any expertise) in a within-subject, online, video-based study. The study videos

depicted a similar interaction context to that used in Study 1, with a Pepper robot being used

to guide and encourage a therapy patient through their exercises. Perception of the robot was

also measured in the same way as Study 1 with a variety of scales covering credibility, likeability,

perceived relationship development and ascription of responsibility. The results for all of these

measures are summarised in Table 3.7. These results provide initial evidence that reference to

human expertise specifically may have positive impact on perception of the robot. Given that this

would be the more ethical course of action (c.f. BSI (2016)) the results suggest, at the very least,

that there’s no reason not to use this approach.

Participants were also asked to identify which of the robots they found more motivating

and would rather work with. Responses to these questions and corresponding justifications

strength the above results significantly. The human expertise robot was most commonly selected

as both most motivating and the preferred robot to work with, with the link to therapists being

explicitly identified as a key reason for this. Compared to the persuasive strategies investigated
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Credibility Likeability
Patient

Relationship
Robot

Relationship
Robot

Responsibility
Therapist

Responsibility
RE HE C RE HE C RE HE C RE HE C RE HE C RE HE C

RE x m m x n.s. n.s. x n.s. X x n.s. n.s. x m X x n.s. n.s.
HE x x p x x n.s. x x X x x n.s. x x X x x X

Table 3.7: Summary of quantitative Study 2 results. RE, HE and C refer to the three conditions
(Human Expertise, Robot Expertise and Control) respectively. Results key: n.s. = not significant;
m = mixed (significant on some subscales only); X=significant

in Study 1, this study essentially focused on a manipulation of the expertise strategy only. The

other two strategies of goodwill and similarity are arguably more social by nature and therefore

have more potential for evoking anthropomorphism. The results from this study (regarding

the effectiveness of more ethical behaviour) cannot therefore be assumed to also apply to these

behaviours, motivating Study 3.

3.4 Study 3: (More) Ethical Design of Social Dialogue

The aim of this study was investigate the impact of designing socially persuasive interaction

behaviours in a way that attempts to minimise anthropomorphism. This would better comply with

recommendations made in the British Standard BS 8611 (BSI 2016). Specifically, the standard

suggests that unnecessary anthropomorphism should be avoided, as should deception that might

arise from the behaviour and/or appearance of the robot, specifically with regard to ‘its robotic

nature’.

3.4.1 Methodology

A three condition, within-subject, online video-based study was designed with an identical set-up

to that in Study 2, with the same interaction scenario and preceding participant prompt. Two

of the conditions were designed to attempt to vary the level of anthropomorphism that might

be evoked by the robot’s speech, with the third condition representing a control where the robot

didn’t engage in any social dialogue. In this way, the conditions also varied in compliance with

recommendations of the BS 8611 standard. A total of 121 participants were recruited to the study

representing 38 males, 82 females and 1 of undisclosed gender with a categorical age distribution

as shown in Figure 3.17. Participants were recruited through the Prolific 10 online platform,

through which they were reimbursed £2.50 (in-line with the UK national minimum wage) for

their participation. The study was approved by the Faculty of Science ethics committee of the

University of Bristol.

10https://www.prolific.co/
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Figure 3.17: Age distribution for Study 3 participants.

Specific to this study, and mirroring the question on deception in Study 1, after watching

all of the videos and after completing all other measures, participants were asked whether they

found any of the robots deceptive as follows:

“Having watched all of the videos, do you think any of the robots were deceptive? If so, please

give details on which robot(s) and why, and whether you would be happy for the robot to act this

way.”

In Study 1, participants were able to re-visit and discuss their answers to the equivalent

deception question after hearing the researcher debrief, which described the potential for robots

to be persuasive via social behaviour. For this study, recruitment was instead doubled to allow for

an additional between-group manipulation of priming with regards to this potential deception.

The only difference between groups was on the final questionnaire item regarding deception. The

unprimed group were simply given the question as presented above. The primed group were

instead presented with the following additional text as part of the question:

“Social robots are typically programmed to display human-like social behaviours such as

showing emotions or being empathetic; and are often designed to speak and act in a very human-

like manner. There is a growing concern amongst some roboticists that this is deceptive, as robots

do not and cannot feel emotions, nor do they have any real interest in the person they are interacting

with. One aim of this study is to explore whether such behaviour are considered deceptive, and to

investigate if/how much that might change perception of a robot.”

3.4.2 Experimental Conditions

The experimental conditions were designed to vary how upfront the robot was about its robotic

nature, whilst engaging in the kind of social interactions/dialogue utilised in the goodwill and

similarity persuasive strategies described in Study 1. This represents variation in suggested

79



CHAPTER 3. PERSUASION AS A MODEL FOR SOCIALLY ASSISTIVE HRI

social and affective capabilities (or lack thereof) which might affect anthropomorphism, c.f. BS

8611. The anthropomorphic condition has the robot refer to itself like a human, whereas the

ethical condition makes references to the robot’s nature and refers to other humans rather than

itself when demonstrating goodwill, therefore arguably less deceptive and more in line with

the recommendations made in BS 8611. The dialogue for each condition is shown in Table 3.8.

Example videos of each condition can also be found online11,12,13.

3.4.3 Results

Credibility

Both social robots were rated as significantly more credible than the control on all subscales

of the measure. The anthropomorphic robot rated significantly higher than the ethical robot on

the Goodwill subscale only. However, effect sizes were small:

• Expertise F(2,121)= 8.49, p < .001 with small effect size (0.066)

– Anthropomorphic (m = 3.91) > Control (m = 3.66) p = .004

– Ethical (m = 3.66) > Control (m 3.66) p = .002

• Trustworthiness F(2,121)= 13.6p < .001 with small effect size (0.102)

– Anthropomorphic (m = 3.80) > Control (m = 3.52) p < .001

– Ethical (m = 3.77) > Control (m = 3.52) p < .001

• Goodwill F(2,121)= 52.5p < .001 with small effect size (0.304)

– Anthropomorphic (m = 3.90) > Ethical (m = 3.72) p = .043

– Anthropomorphic (m = 3.90) > Control (m = 3.07) p < .001

– Ethical (m = 3.72) > Control (m = 3.07) p < .001

Likeability

Both social robots were rated as significantly more likeable than the control. The anthropo-

morphic robot was also rated as significantly more likeable than the ethical one. However, effect

size was small:

• Likeability F(2,121)= 47.8, p < .001 with small effect size (0.285)

– Anthropomorphic (m = 4.02) > Ethical (m = 3.87) p = .010

11Anthropomorphic: https://youtu.be/G4k7Uxo4BYg
12Ethical: https://youtu.be/b-nfUszHYqE
13Control: https://youtu.be/WkSYI3cvohE
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Anthropomorphic Condition Dialogue
Hello I will be working with you on your exercises. I’m pleased to meet you and looking forward
to working together. Let me tell you a little bit about myself. I am originally from Paris, but now
I live in the Bristol Robotics Laboratory. My job is to interact with people and help them achieve
their goals. I would like to get to know you better. Can I ask you some questions?
(OK)
Great, so where are you from?
(I’m from Bristol)
Bristol, just like me! Bristol is great. And what do you do for a living?
(I’m a teacher)
That sounds very interesting, what does that involve?
(I teach science to high school students)
Cool. Thank you! Now I feel like we know each other a bit more. So how do you feel about
exercising today?
(I don’t really feel like it)
I know that exercising can be boring or hard, and we all suffer from a lack of motivation sometimes.
I hope I can make exercising a bit more enjoyable for you. Shall we get started?
That was great. I’m very impressed. Time for the last exercise, I appreciate you sticking with me.
That’s it, you’re all finished. It was fun to work out with you. I hope you will work out with me
again tomorrow. Goodbye for now.
Ethical Condition Dialogue
Hello. I will be working with you on your exercises. Let me tell you a little bit about myself. I
was designed and built in Paris, but I was programmed at the Bristol Robotics Laboratory. I am
designed to interact with people and help them achieve their goals. Can I ask you some questions,
so that I can personalise my interaction with you?
(OK)
Great, so where are you from?
(I’m from Bristol)
The robotics laboratory where I was programmed is also in Bristol. And what do you do for a
living?
(I’m a teacher)
What does that involve?
(I teach science to high school students)
Cool. Thank you! I will update my record of you. So how do you feel about exercising today?
(I don’t really feel like it)
Many patients find exercising boring or hard, and it is normal to suffer from a lack of motivation
sometimes. Perhaps working with me will make exercising a bit more enjoyable for you. Shall we
get started?
That was good, your therapist would be impressed. Time for the last exercise, it’s great that
you’re sticking with me.
That’s it, you’re all finished. You had a good session today. Perhaps you will work out with me
again tomorrow. Goodbye for now.
Control Condition Dialogue
Hello. I will be working with you on your exercises. Shall we get started?
That’s it. Time for the last exercise.
That’s it, you’re all finished. Goodbye for now.

Table 3.8: Pre-/in-between exercise robot-actor dialogue in each condition of Study 3.
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– Anthropomorphic (m = 4.02) > Control (m = 3.32) p < .001

– Ethical (m = 3.87) > Control (m = 3.32) p < .001

Patient-Robot Relationship

Perceived patient-robot relationship was significantly greater for both social robots than the

control, and greater for the anthropomorphic than the ethical. Both social robots were perceived

to develop more of a relationship with the patient than the control. Effect sizes were small to

moderate.

• Patient Relationship with Robot F(2,121)= 69.1,

p < .001 with moderate effect size (0.472)

– Anthropomorphic (m = 3.10) > Ethical (m = 2.80) p = .005

– Anthropomorphic (m = 3.10) > Control (m = 1.86) p < .001

– Ethical (m = 2.80) > Control (m = 1.86) p < .001

• Robot Relationship with Patient F(2,121)= 62.6,

p < .001 with small effect size (0.343)

– Anthropomorphic (m = 3.15) > Control (m = 1.80) p < .001

– Ethical (m = 2.90) > Control (m = 1.80) p < .001

The correlation between participant answers to these two questions on relationship develop-

ment to/from the robot was calculated for each robot condition as follows:

• Anthropomorphic r = 0.663 moderate correlation

• Ethical r = 0.634 moderate correlation

• Control r = 0.850 strong correlation

Therapist & Robot Responsibility

Both social robots were ascribed more responsibility than the control across both measures.

The anthropomorphic robot was also ascribed more responsibility for monitoring the patient than

the ethical. However, effect sizes were small. No significant difference was found on therapist

responsibility for monitoring the patient F(1.742,121)= 1.125, p = .321 or therapist responsibility

for giving advice to the patient F(1.835,121)= .508, p = .602.

• Robot Responsibility for Monitoring Patient F(1.906,121) = 19.860, p < .001 with small

effect size (0.142)
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– Anthropomorphic (m = 2.94) > Ethical (m = 2.72) p = .029

– Anthropomorphic (m = 2.94) > Control (m = 2.35) p < .001

– Ethical (m = 2.90) > Control (m = 2.35) p = .001

• Robot Responsibility for Advising Patient F(1.906,121)= 19.860, p < .001 with small effect

size (0.180)

– Anthropomorphic (m = 2.94) > Control (m = 2.45) p < .001

– Ethical (m = 2.88) > Control (m = 2.45) p < .001

Most Motivating & Work Preference

The anthropomorphic robot was most commonly identified as both the most motivating and

the most preferred to work with (67/120 and 60/121 respectively); however the answers were

more spread than for the equivalent question in Study 2. The results are shown in Figure 3.18.

Figure 3.18: Count of participants responses to the questions on which robot was most motivating
and which robot they would rather work with.

Figure 3.19 shows emergent themes found from coding those comments that were left regard-

ing participants choice of which robot they’d rather work with. In each case, the main reasons

given somewhat reflected the experimental manipulations e.g. concerning the more anthropomor-

phic robot being more human-like or seeming more caring, the ethical robot being less human-like

and more honest/genuine.

Correlations Between Responsibility Ascription and Credibility Measures

Responses to the abstract credibility measure subscales and robot responsibility ascrip-

tion were examined for correlation across all three conditions. All measures of the credibility

questionnaire weakly correlated with ascription of responsibility to the robot.

83



CHAPTER 3. PERSUASION AS A MODEL FOR SOCIALLY ASSISTIVE HRI

Figure 3.19: Emergent themes from Study 3 regarding participants’ preferred choice of robot.

Deception

Regardless of priming condition, participants overwhelmingly suggested they did not find

any of the robots to be deceptive, as shown in Figure 3.20. Figure 3.21 shows emergent themes

found from coding that were left regarding participants choice of answer. Particularly concerning

reasons why none of the robots were deceptive (as chosen by the majority of participants) there is

significant overlap with the themes identified in Study 1: that the behaviours were appropriate

for the application, that participants were not/could not be deceived with respect to the robot’s

capabilities and that the robot was just following its programming.

3.4.4 Summary of Study 3 Results

Study 3 was designed to investigate the impact of designing more ethical socially persuasive

interaction behaviours that were designed to evoke less anthropomorphism as per a published

standard on ethical robot design. More ethical (less anthropomorphic) and more anthropomorphic

(less ethical) social interaction strategies were compared against each other and a control (which

didn’t utilise any social interaction) in a within-subject, online study. The video set-up and

scenario was identical to that of Study 2, again using an interaction context similar to that

of Study 1. Perception of the robot was also measured in the same way as in Studies 1 and 2

with a variety of scales covering credibility, likeability, perceived relationship development and

ascription of responsibility. The results for all of these measures are summarised in Table 3.9.

These results provide initial evidence that more anthropomorphic (less ethical) behaviour may

have a positive impact on perception of the robot compared to the more ethical approach. This
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Figure 3.20: Count of participant responses to the question on whether they found any of the
robots to be deceptive.

Figure 3.21: Emergent themes regarding whether participants found any of the robots to be
deceptive.
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Credibility Likeability
Patient

Relationship
Robot

Relationship
Robot

Responsibility
Therapist

Responsibility
A E C A E C A E C A E C A E C A E C

A x m X x X X x X X x n.s. X m X x n.s. n.s.
E x x X x x X x x X x x X x x X x x n.s.

Table 3.9: Summary of quantitative Study 3 results. A, E and C refer to the three conditions
(Anthropomorphic, Ethical and Control) respectively. Results key: n.s. = not significant;m = mixed
(significant on some subscales only); X=significant

would at least suggest that further work is required to investigate and consider the potential

trade offs between increased anthropomorphism and persuasive effectiveness (specifically on

whether these effects translate into differences in objective behaviour/persuasiveness in a study

like Study 1).

Participants were also asked to identify which of the robots they found more motivating and

would rather work with. Responses to this question and corresponding justifications further

strengthen the importance of personalisation, as first discussed in Chapter 2. Whilst the anthro-

pomorphic robot was generally selected as the most motivating and preferred to work with, this

wasn’t universal. In fact, a notable number of participants actively preferred the control robot for

for its complete lack of social interaction.

Specifically in line with Study 1, the study also considered perceptions of acceptability and

deception in the portrayed robot behaviours. However, an additional between-manipulation was

applied such that half of participants were primed with regards to the potential ethical risk of

deception posed by these behaviours. This manipulation was found to have no effect, with the

overwhelming majority of participants suggesting the robot was not deceptive.

3.5 Summary of Findings

3.5.1 Socially Persuasive Strategies on Robot Persuasiveness (RQ1)

The results of Study 1 suggest that demonstrations of goodwill and similarity can be used to

significantly increase the persuasiveness of a social robot in a low elaboration scenario, i.e. one in

which the user has little interest/motivation. Demostration of expertise was shown to have no

significant effect.

3.5.2 Socially Persuasive Strategies on Perception of the Robot (RQ2)

The results from Studies 1-3 present a mixed picture concerning the impact of socially persuasive

behaviour on robot credibility and likeability. In Study 1, in contrast with the persuasiveness/user

behaviour results, no significant difference was found across conditions. Further, comparison

of the pre/post hoc questionnaire responses in Study 1 showed similar within-subject shifts
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for all participants across all conditions, again suggesting no significant difference related to

the implemented persuasive strategies. The results of Studies 2 and 3 however demonstrated

significant within-subject differences in perceived credibility and likeability across conditions.

Concerning other perception measures, results from Study 2 suggest that a robot demon-

strating expertise linked with a relevant human authority might be afforded more responsibility

than one which tried to present its own expertise (as per the Study 1 expertise condition), or no

expertise. In Study 3, both the anthropomorphic and more ethical robots (which demonstrated

similar goodwill/similarity based social behaviours) were also ascribed more responsibility than

the control.

3.5.3 Correlations Between Credibility/Likeability & Persuasiveness (RQ3)

There was little evidence found for a correlation between subjective credibility/likeability and

persuasiveness/more applied credibility measures (i.e. objective user behaviour in Study 1 and

responsibility ascription in Studies 2 and 3) across any of the studies.

3.5.4 Socially Persuasive Behaviour: Deception and Acceptability (RQ4)

In Study 1, across all conditions, participants predominantly classified the robot as either not

deceptive or deceptive but acceptable. Interestingly, the spread of answers did not vary across

conditions as much as might be expected (i.e. 40% of control group classified the robot as being

deceptive, as did 40% of the goodwill group). In Study 3, the overwhelming majority of participants

(regardless of whether they were primed with regards to the potential deception or not) did not

find any of the robots they saw to be deceptive. Across both studies, reasons given for not finding

the robot deceptive included the idea that participants were not deceived with regards to the

robot’s (emotional) capabilities, that the robot was just following its programming and, moving

towards acceptability, that the robot was acting appropriately for the proposed application.

For those participants of Study 1 who found the robot to be deceptive but acceptable, a

common themes across all conditions was again the effectiveness/appropriateness for the proposed

application. The theme of participants not being deceived with regards to the robot’s nature

was most obviously present in results from participants in the expertise and control conditions.

Participants in the goodwill and similarity conditions seemed more open to the potential for this

type of deception. However, the way that most participants answered the question on ‘genuineness’

suggested they were not actually deceived this way as they recognised that the robot was not

actually capable of caring for them or feeling emotions etc. An additional emergent theme in

these conditions specifically was the idea that these behaviours mirrored what an equivalent

human would also do. It was identified that such humans could be considered equally deceptive

as they may ‘not really mean it’ and might just be being polite/asking what they should within

the context of their role as e.g. an exercise instructor.
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3.5.5 Impact of (More) Ethical Dialogue on Persuasive Effectiveness (RQ5)

Across all of the implemented measures, the results from Study 2 suggest that having the robot

refer back to a human authority when demonstrating expertise and/or authority may be better

(and at least would not be worse) than instead having the robot present expertise/authority as

its own or presenting no expertise at all. In this way, what would be considered more ethical

would also potentially be most effective for persuasiveness. In contrast, the results from Study 3

suggest than when utilising more socially persuasive behaviour, i.e. the similarity and goodwill

cues, using more ethical (i.e. less anthropomorphic) dialogue may have a negative impact on

effectiveness.

However, it must be noted that these are preliminary results are based on online studies

only, considering the impact on subjective perception of the robot, responsibility ascription and

preferences captured by questionnaire only. In addition, effect sizes were generally fairly small.

Further work investigating these manipulations in a live, physically-situated HRI study would

be required to test the impact on objective user behaviour and fully address RQ5.

3.6 Discussion

3.6.1 Persuasion as a Model for Social, Assistive HRI

In the introduction to this chapter, it was posited that persuasion might be an appropriate

way to model task-based, socially assistive HRI at two levels. Firstly, it was suggested that the

base functionalities of a socially assistive robot, i.e. prompting or encouraging a particular user

behaviour, could be considered instances of persuasion. As discussed in Section 3.1.1, the ELM

was identified as a specific model of persuasion which might be appropriate for modelling socially

assistive scenarios because:

(i) the persuasive strategies identified by the ELM demonstrated significant overlap with

encouraging/motivating behaviours identified in the study with therapists presented in Chapter

2. The distinction between and differences in strategies designed to target high versus low

elaboration receivers also matched well to therapist descriptions of the different approaches

required for different service users.

(ii) elaboration level seemed an appropriate proxy for user motivation/interest in the kind of

tasks SARs might be designed to assist with. Results from the study with therapists in Chapter

2 suggest that in therapy, the majority of service users could be considered as low elaboration

with respect to their therapeutic exercise regime. As such, the studies presented here focused on

low elaboration persuasive strategies. However, the ELM further identifies persuasion strategies

that are more likely to be effective when the recipient is high elaboration, and could therefore

offer one way in which robot behaviour could be personalised to the user.

By design, the interaction scenario used for Study 1 demonstrates the persuasive nature of

socially assistive robot functionality, with the robot asking participants to engage in an exercise
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task as much as possible. This represents an application also demonstrated in previous SAR/HRI

studies and reaffirmed in the study with therapists presented in Chapter 2. The results from

this study suggest the ELM is indeed an appropriate and useful model for informing SAR design,

given that two of the three ELM-informed persuasive strategies tested were shown to objectively

increase robot persuasiveness in the context of a relatively boring exercise that participants had

little/no intrinsic motivation to complete.

The third strategy tested in Study 1 ((S1) citing expertise) did not have a significant impact

on persuasiveness. This could be because the robot was automatically expected to be a source

of/programmed with extensive information; or that robot expertise was pre-assumed based on the

pretense of the experiment (testing of a robot designed ultimately to be used in therapy). The latter

might reflect results in HHI concerning credibility of a source being increased by introduction

from a credible third party ((S5) as described in Section 3.1.1); in this case that third party

being the researcher. Both arguments are consistent with results to the pre hoc questionnaire,

on which the robot generally received a high score for expertise across all participants (M =

4.02, SD = 0.60) but there is particular evidence for this link between the robot and a credible

(human) third party. Firstly, the results from Study 2 suggest that having the robot refer to/cite

expertise of human programmers or domain authorities (e.g. therapists) may influence robot

credibility more positively than the robot presenting itself as the expert, as was done in Study

1. Secondly, qualitative data from Study 1 linked participants’ assessment of robot credibility

to considerations regarding e.g. the programmer/human therapy authority. This would imply

that, for robots, (S1) citing expertise may not work, but leveraging the expertise of/referencing a

credible human, perhaps linking to strategies regarding third party endorsement (S5, S9) might

do.

In summary, the results presented in this chapter demonstrate that social influence and

persuasion (and in particular the Elaboration Likelihood Model) offer an appropriate way to

conceptualise/model SAR user interactions, and can therefore be used to inform the design of

socially persuasive SAR behaviours (more on this under Section 3.6.3). Further, given the overlap

between (i) robot behaviours demonstrated in previous HRI literature (see Table 3.2) and the

persuasive strategies listed in 3.1.1 and (ii) human credibility measures and measures typically

used to assess the impact of social robot behaviours (e.g. the Godspeed questionnaire (Bartneck

et al. 2009)), it could be argued that persuasion represents a good model for conceptualising and

informing social HRI more generally. This opens up a new body of HHI literature and avenues

for research to be considered by social HRI researchers.

3.6.2 The Difficulty of Assessing Robot Credibility/Likeability

The ELM notes the link between perception of a source and their persuasiveness, leading

to the expectation that credibility and likeability scores should correlate with objective user

behaviour and potentially other proxy measures for persuasiveness (e.g. responsibility ascription).
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However, no such correlations were strongly evidenced across any of the studies. Three possible

explanations for this are as follows:

1. Low construct validity of the subjective measures (i.e. the measures were not appropriate

for measuring the subject of interest).

2. Manipulation of perception of the robot was subconscious; impacting participant behaviour

and response to the more applied credibility measures but not influencing conscious percep-

tion of the robot.

3. Answers to the questionnaire were predominantly influenced by something other than the

conditioned dialogues.

Manipulation of perception of the robot being subconscious seems unlikely given that partici-

pants in each condition of Study 1 tended to describe the robot and like things about the robot that

reflected the persuasive manipulation specific to their condition. Similarly participants in Studies

2 and 3 were able to identify why they preferred one robot condition over another explicitly

referencing the experimental manipulations. Answers to the questionnaire being influenced by

something other than the experimental manipulations also seems unlikely given that the same

lack of correlation was found across both the online and the live studies which were implemented

in completely different environments with different protocols etc.

Concerning validity of the measures, taking the results from Study 1 specifically, Cronbach’s

alpha was calculated for the likeability scale (0.89) and each of the credibility measure subscales

(expertise = 0.90, trustworthiness = 0.87, goodwill = -0.02 and sociability = 0.77). Whilst this does

not offer insight into the appropriateness of the questionnaire, it does indicate that, excluding

the subscale of goodwill, participants were consistent in their responses across individual ques-

tionnaire items. The goodwill subscale contains a number of fairly emotive descriptors (e.g. ‘the

robot does/does not care about me’, see Table 3.1). Some participants commented that they found

the questionnaire difficult as they did not think it was appropriate to apply such human traits to

a robot:

[S3]: “I did find it a little bit difficult I have to say, because you’re asking all these questions

about a machine, you know whether it’s honest or not"

In general, the significant variation and potential inconsistencies both within and between

participants across the studies demonstrates that participants engage in complex reasoning

when considering subjective measures assessing social robots. For example, Figure 3.5 shows

participant responses to the post hoc question regarding genuineness of behaviour, administered

to Study 1 participants in the goodwill and similarity conditions. It can be seen that, whilst half

of participants elected that the robot was not at all/not very genuine, a significant number elected

the opposite; suggesting large individual differences in perception of the behaviours. Further,

participant responses to this question did not correlate with their responses to the credibility
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questionnaire or likeability measure. This suggests that participants were inconsistent in their

ascription of human traits/capabilities on to the robot; otherwise significant correlations would

be expected such that e.g. participants who found the robot to be very genuine would also score it

highly for goodwill as per HHI (McCroskey & Teven 1999). Interview data suggests this is likely

because participants felt the interaction was genuine (either based on how it felt or thinking

about the purpose of the robot and its design) whilst being fully aware that the robot itself could

not actually care for them.

Previous works investigating subjective measures and persuasiveness in HRI have also

yielded mixed results. Chidambaram et al. (2012) found nonverbal cues had a significant effect on

an objective persuasion measure (compliance). This was not reflected in their subjective measure,

but the authors did find a significant correlation between the two. Nakagawa et al. (2011) however

were able to demonstrate a significant result on both objective and subjective measures, but no

correlation between them. It is difficult to compare these results directly as both studies utilised

different, study-specific subjective measures. Chidambaram et al. (2012) used a questionnaire

designed to measure perceived persuasiveness and social/intellectual characteristics whereas

Nakagawa et al. (2011) measured ‘feeling of friendliness’. Both of these measures could be

seen to have some overlap with the credibility and likeability measures employed in this work.

Concerning studies in HHI however, source credibility (measured subjectively) is commonly found

to correlate with persuasion (see Pornpitakpan (2004) for a review).

It could be argued that by comparing the Study 1 objective persuasion results with the

qualitative data collected, examining the qualitative data for the concepts of credibility and

likeability rather than using the raw questionnaire responses, the results do demonstrate this

correlation. Specifically, participants in the goodwill and similarity conditions described the robot

as motivating and expressed a liking for the encouragements it gave. This was noticeably missing

for the expertise condition, thus reflecting the objective results that participants in the goodwill

and similarity did significantly more exercise than those in the control condition, whereas those

in the expertise condition did not.

In summary, considering:

(i) the mixed results regarding robot credibility across the presented studies (no difference

across conditions in between-subject Study 1 but significant differences in within-subject

Studies 2 and 3)

(ii) the positive evidence that persuasive strategies from HHI ‘work’ in HRI; i.e. that persuasion

may be an appropriate model for social HRI, and that in HHI there is a well demonstrated

correlation between credibility and persuasiveness

(iii) the qualitative data collected regarding participants application of/reasoning when consid-

ering the study questionnaire measures
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(iv) qualitative data evidence for robot credibility/likeability correlating with objective persua-

siveness results in Study 1

it would seem that robot credibility is a construct which can be impacted by the robot’s

social behaviour design, and could be expected to correlate with robot persuasiveness, but that

cannot be assessed through direct application of the equivalent HHI measure. It is also clear that

robot credibility is not independent from the overall context of why the robot is utilising such

behaviours, who designed them and for what purpose etc. More generally, the findings presented

in this chapter demonstrate the difficulty in measuring perception of a robot using subjective

measures; likely somewhat due to participants being conflicted in their answers (answering

based on logic/rationale rather than emotional response) or differences in how the robot is

framed/assessed (e.g. as an autonomous social agent presented with no background or detail on

proposed use vs. an extension of the programmer and specifically within the context of its ultimate

application). This highlights the importance of objective measures based on user behaviour, and

the value of qualitative data collection for generating further insight into participant responses.

3.6.3 Designing Socially Persuasive Robots, Ethically

Design implications for leveraging persuasive strategies in SAR design are presented at the end

of this subsection. Given that these recommendations might be considered somewhat at odds

with ethical guidelines for robot design, such as the recent BS 8611, the way this particular

standard was considered during this work and the resulting rationale/justification for potentially

going against it is presented first. It is important to note however that the ethics concerning SAR

use more generally are not a focus of this work. Rather, this is a practical consideration of and

attempt to apply emerging ethical guidelines to real world robot design and development.

Study 1 specifically utilised dialogue that actively opposed the mitigation strategies for

avoiding deception and anthropomorphisation presented in BS 8611 and demonstrated why this

might be worth doing in the context of a real world, useful SAR application. Qualitative data

collected during this study suggest that participants were generally well aware of the robot’s

nature, e.g. that it had simply been programmed to act in a certain way and did not feel any

emotion. Similarly, responses to the questions concerning relationship development to/from the

robot further suggest that participants were acutely aware that the robot was unable to form

relationships, as the distribution of answers to these two questions were significantly different,

and the correlation between them was not as strong as might be expected. This suggests that

participants were able to decouple the two, and identify that whilst they may feel something

toward the robot, that was not necessarily mutual. Answers to the questions on genuineness and

deception further show that, specifically in the context of SAR applications, the demonstrated

socially persuasive behaviours were considered acceptable. This was also echoed in responses to

the equivalent questions implemented for studies 2 and 3.
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Studies 2 and 3 were specifically designed to (i) demonstrate what socially persuasive be-

haviour more aligned with the mitigation strategies presented in BS 8611 might ‘look’ like and

(ii) generate preliminary results as to what impact this might have on the robot’s effectiveness

in terms of credibility, user preference/acceptance etc. The results from Study 2 show that on

demonstrating expertise or authority, having the robot refer to a credible, human third party

rather than itself may be most beneficial. Further, results from Study 1 suggested that having

the robot refer to and present its own expertise had no benefit for persuasiveness. Having this

reference to an appropriate human authority would also align well to the general ethical principle

of ensuring users are aware of who is ultimately responsible for the robot’s behaviour, as well

as being less anthropomorphic and hence deceptive. So for expertise, more ethical interaction

design is likely to also be more effective. On demonstrating social behaviour however, the Study 3

results on robot credibility show that for the more emotive/interaction based socially persuasive

behaviours (i.e. showing empathy, goodwill etc.) it may be more beneficial for the robot to present

itself as the social agent behind those, rather than referencing others.

However, qualitative data collected from both Study 1 and Study 3 demonstrate that partici-

pant opinions on the appropriate style and amount of social interaction for this kind if application

is very much a user personal preference. In Study 3, whilst the robot with the more anthropomor-

phic dialogue was most commonly identified as one participants would rather work with, this

was not by such a large margin as the human versus robot expertise condition robots of Study 2.

In fact, a notable number of participants specifically indicated they would prefer to work with

the control robot which had basically no social interaction at all, because they felt it was more

efficient and preferred the lack of pretence.

Similarly in Study 1, the overlap in themes emerging from participants likes and dislikes

regarding the robot, with social interaction being something some participants liked but others

disliked, shows that the same behaviour can be perceived completely differently by different

users. This points again to the need for personalised approaches to socially persuasive behaviour,

which is in line with the results regarding personalisation of therapy/behaviour presented in

Chapter 2. Persuasion models from HHI might be able to initially inform such personalisation. For

example, the ELM specifically identifies that the amount of rationale provided versus peripheral

cue manipulation attempted by a persuader should be informed by an understanding of the

receiver’s elaboration level. However, socially intelligent assessment and tracking of such a

complicated construct for informing appropriate and effective persuasive strategies represents

another example of the kind of human expert, intuitive/experience-based skills that need to be

replicated by SARs in order for them to be effective.

In summary, the findings presented in this chapter suggest that (i) anthropormorphic and

potentially deceptive behaviours based on persuasion strategies from HHI literature can improve

the effectiveness of a SAR, (ii) personalisation of such behaviours will likely be key in maximising

and maintaining such effectiveness (particularly over the long-term), (iii) such behaviours may
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not actually deceive the user with regards to the robot’s nature and (iv) the use of such behaviours

in the context of SARs is acceptable to users. It must be noted that these findings are limited

to the non-vulnerable, adult population from which participants for these studies were drawn.

However, combined with the results from the study with therapists in Chapter 2, they provide

initial justification that SARs might represent one of the ‘well defined and socially-accepted

purposes’ for actively utilising anthropomorphisation referred to in BS 8611. With these points in

mind, specific strategies for designing socially persuasive SARs should include:

• Having the robot show an interest in the user i.e. the robot should ask about the users’

feelings and or wellbeing, e.g. with regards to the task

• Having the robot suggest some sympathy/empathy i.e. based on the above, the robot should

respond with an appropriate acknowledgement, of matched emotional valence

• Having the robot demonstrate some similarity to the participant i.e. the robot should

indicate it shares the users’ preferences regarding the task/topic

• Ensure that the expectations set by the above behaviours, if deployed in pre-task interaction,

are then met by the successive interactions, particularly around task encouragement and

the robot’s perceived engagement in/understanding of the participant’s task performance

i.e. after displaying an affective interest in the user the robot should continue to provide

social encouragements and interactions during execution of the task

• Doing all of the above in an anthropomorphic ‘first person’ way i.e. presenting itself as the

social agent actively engaging in those social behaviours rather than referencing human

third-parties

• Having appropriate persons, already perceived as highly credible to users (e.g. therapists),

introduce and/or endorse the robot

• Refer to that/those human(s) when demonstrating expertise/authority i.e. when making a

task-related request or providing task rationale

• Adaptive tailoring and personalisation of persuasive strategy and related social interac-

tions/behaviours to the user and the context

3.7 Conclusion

This chapter presents findings from three studies concerning the effectiveness and acceptability

of socially persuasive behaviours, inspired by results from the previously presented study with

therapists and an informed review of HHI literature on persuasion, in the context of SARs.

Together, the studies consider both pure, objective ‘effectiveness’ of these behaviours i.e. how they
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can impact on user behaviour, but also the potential for ethical risk and what impact trying to

minimise this might have on that effectiveness. Key findings across the combined results can be

summarised as follows:

• Demonstrations of goodwill and similarity increased the persuasiveness of a SAR, as

measured objectively by the amount of voluntary exercise participants elected to complete.

• Demonstrations of expertise did not have the same effect, but this may be because such

demonstrations are only effective for robots if they refer to the human source of such

expertise.

• Based on the above, the Elaboration Likelihood Model (ELM) of persuasion seems to be

an appropriate model for interactions whereby a SAR is designed to encourage or guide

particular user tasks/behaviours, offering inspiration for robot behaviour design.

• Robot credibility does seem to be a construct that exists in perceptions of a social robot, and

that can be impacted by that robot’s social behaviour. However, robot credibility is not inde-

pendent from the credibility of the robot’s programmer, associated expert humans and/or

the context of application. Predominantly due to this, typical HHI based questionnaire

measures for credibility are likely not appropriate for assessing robot credibility, and more

generally the use of subjective questionnaire measures such as the Godspeed questionnaire

should be used with caution in HRI studies.

• Building on the above, user acceptability of socially persuasive behaviours is explicitly

linked with their purpose. Within the context of SARs, there seems to be a consensus that

even if such behaviours are deceptive (many participants suggested they were not) then

that deception is acceptable because these behaviours are particularly appropriate and/or

effective for such use cases.

• Whilst in some cases it might be that designing more ethical social robot behaviours

also results in them being more effective (e.g. with displays of expertise) it is likely that

SAR behaviours will need to leverage anthropomorphism to be effective and will as such

go somewhat against emerging ethical standards concerning the need to minimise this.

However, the positive acceptability and lack of deceptiveness results noted above suggest

that SARs for exercise encouragement might be one ‘well-defined and socially acceptable

application’ (BSI 2016) for which such use of anthropomorphisation is justified.

These findings were analysed to generate a set of design implications, for informing SAR

and persuasive social HRI design more generally, that include a practical attempt to incorporate

compliance with/awareness of the recent British Standard BS 8611 for the ethical design of

robots and robotic devices. It is also hoped that these design implications and the discussion

surrounding key results in this chapter demonstrate the benefits of (i) objective rather than
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subjective measures and (ii) qualitative data collection in the context of understanding social

HRI, thereby motivating future works to incorporate these into any experimental protocol.

Concerning the ultimate goal of this research, the design and automation of an autonomous

SAR, the results in this chapter have the following implications:

Importance (and Complexity) of Personalising Persuasive Social Robot Behaviour

The different persuasion strategies identified for high and low elaboration by the ELM, some

of the very mixed results from this work regarding participant preferences, perception and

acceptability of behaviours, and results from the study with therapists in Chapter 2 all highlight

the importance of personalisation, but also the complexity in doing that effectively. Neither the

HHI literature reviewed nor the study with therapists resulted in explicit and tangible ‘rules’ for

informing the personalisation of persuasive behaviour (beyond the high versus low elaboration

strategies identified by the ELM) in a form that could be used to automate SAR behaviour. The

study with therapists specifically suggested that this type of personalisation was only possible

after ‘getting to know’ the service user. This points towards the potential of an expert-in-the-loop

approach to automation that (i) specifically allows an expert to monitor a SAR interaction, over

time (to allow for personalisation effects) and (ii) allows the expert to provide feedback in real

time based on what ‘feels’ right (rather than having to explicitly provide some sort of heuristic or

reasoning). This therefore motivates the expert-in-the-loop machine learning approach, applied

to automation of a SAR, presented in Chapter 4: Creating an Autonomous, Socially Assistive

Robot with Interactive Machine Learning.

Interactions Between the Robot, its Application and Those Behind its Deployment

Particularly regarding the acceptability of socially persuasive robot behaviour, the results

in this and the previous chapter demonstrate the inability to consider a robot in isolation; i.e.

outside of contextual factors surrounding the intent behind its design, proposed application and

environment into which it would be deployed. This is further evidence of the need to take a

mutual shaping approach to robot design and development, as employed throughout this work

and reflected upon in Chapter 5 Mutual Shaping in Design and Deployment of Socially Assistive

Robots. More specifically, the potential for inherited credibility, or acceptability and trust of

socially persuasive behaviours being linked with them being signed off by an expert, further

motivates the use of expert-in-the-loop methods like that employed in Chapter 4.
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4
CREATING AN AUTONOMOUS, SOCIALLY ASSISTIVE ROBOT WITH

INTERACTIVE MACHINE LEARNING

Results from the studies presented in Chapters 2 and 3 offer a number of design guidelines

for creating an effective socially assistive robot (SAR). The next step then becomes

a consideration of how to automate socially assistive robot behaviour, utilising these

guidelines, in order to create a real world useful system. The study with therapists in particular

identified that whilst experts can identify things they take into consideration (i.e their inputs) and

the different behaviours they may exhibit in different scenarios (i.e. their outputs), it is difficult

for them to explain the link between them. There were many references to the importance of

getting to know the client and acting based on intuition and experience. This chapter presents

the design, implementation and evaluation of an interactive machine learning (IML) system

designed with this in mind. The IML setup allows a domain expert to contribute to automation

of robot behaviours directly, by observing the robot in action and providing training data to the

learning system in real-time. This work and a subset of the results presented in this chapter will

be presented at Robotics: Science and Systems 2020.

4.1 Introduction

The results from Chapter 3 demonstrated that having a robot demonstrate human-like social

persuasive strategies was effective in motivating engagement with a task. However, all work

in that chapter utilised a wizard-of-oz setup and hence did not consider how such behaviours

might be made autonomous. Many previous works on automating social robot behaviour have

attempted to emulate lifelike behaviour by employing models based on human or animal psychol-

ogy (e.g. Lemaignan et al. (2017), Arkin et al. (2001)), or through observing and then attempting
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to replicate human-human interaction (Sussenbach et al. 2014). Such methods are relatively

inaccessible to non-roboticists, which limits the potential for direct input from domain experts

(teachers, therapists etc.) who are skilled in the use of social interaction in complex assistance

scenarios. They also offer little opportunity to consider the dynamic interaction between robots

and their context of use; noted throughout this work as crucial for the successful real world

deployment of SARs.

An alternative approach is to have a human teach the robot how to behave. This is typically

achieved using Learning from Demonstration methods in which a human controls the robot to

demonstrate the desired behaviour, resulting in a training dataset to which machine learning

can then be applied offline (e.g. Knox et al. (2014), Sequeira et al. (2016), Clark-Turner & Begum

(2018)). State of the art work has gone past this to utilise interactive machine learning (IML)

which allows the learning process to occur in real-time, such that the robot can be used and

trained simultaneously. Such an approach was recently demonstrated as a feasible method for

generating autonomous, socially assistive robot behaviour via the framework of Supervised

Progressively Autonomous Robot Control (SPARC) (Senft et al. 2019). The following subsection

gives more detail on how SPARC works and why it was identified as a promising methodology to

employ in this work.

4.1.1 Interactive Machine Learning for Automating SAR Behaviour

Figure 4.1 provides a simplified overview of the interaction flow underpinning the IML element

of SPARC. During training/supervised use of the robot, the robot interacts with the participant

directly, but under the close supervision of the expert. Initially, the robot does not have any action

policy, and the expert effectively teleoperates the robot by providing action exemplars that are

directly executed by the robot, and simultaneously added to the training dataset. After each

example, the robot incrementally trains its own model, in order to progressively learn its own

action policy. Early on in the process, the robot starts to generate action suggestions, that are sent

to the expert for validation. If accepted, these suggestions are positively rewarded; if rejected,

they are negatively rewarded. Combined with the expert-initiated exemplars, this helps the robot

machine algorithm to quickly converge toward an appropriate action policy. Once the expert is

confident that the robot’s suggestions are ‘good enough to be trusted’, they can ‘switch’ to the

autonomous mode, in which the robot’s suggestions are automatically accepted, without any

human intervention, resulting in a fully autonomous behaviour.

Overall, the SPARC approach was specifically identified as being appropriate for this work

for two key reasons. Firstly, it provides a mechanism for learning from intuitive expert behaviour

and tacit expertise that are difficult to verbalise. Secondly, as a methodology, it aligns with the

expert-informed and mutual shaping approach taken throughout this thesis. In further detail,

SPARC is an appropriate and advantageous method for automating SAR behaviour because:

(i) it requires only the identification of the robot’s input and output space (which can be
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Figure 4.1: Expert-in-the-loop machine learning: during the robot-participant interaction, the
expert teacher can either initiate suitable robot actions (expert exemplars), or the robot itself
can suggest actions, that are then evaluated by the expert. Every time an action is initiated or
evaluated, a tuple {input space; action; reward} is added to the training set of the robot’s learning
algorithm. Over time, the robot suggests more and more appropriate actions, and becomes
progressively autonomous.

co-designed with a domain expert) without any rules between them

(ii) it allows a domain expert to contribute to design and automation of the robot

(iii) building on the above, it offers a specific path to personalisation of robot behaviour

(iv) deployed in the ‘real world’ it can be responsive to mutual shaping effects (reflected in the

expert’s control/supervision of the system)

(v) having an expert-in-the-loop during both training and autonomous operation is desirable

from both a safety and ethical perspective (concerning e.g. the verification/validation of

resultant autonomous behaviours and prevention of any inappropriate behaviour)

This chapter describes development and application of the SPARC methodology to an exemplar

use case representative of the long-term, monotonous exercise engagement scenarios considered in

Chapters 2 and 3. This is described in detail below. Results presented in this chapter demonstrate

that the approach was fundamentally successful in generating appropriate autonomous behaviour.

Chapter 5 further details how this methodology can be considered as a participatory design

technique. Additional results and observations presented in that chapter further demonstrate

that this approach supports pursuit of a mutual shaping approach to robot design, development

and deployment.
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4.1.2 Couch to 5km: a Real World SAR Application

Given the difficulty in identifying a suitable therapist-patient group into which a developmental

SAR could be (safely) deployed and tested, it was decided to instead target the similar but lower

risk use case of a long-term exercise programme designed for individuals wanting to become more

active. Specifically, the UK National Health Service (NHS) Couch to 5km (C25K) programme was

identified as an appropriate proxy use case because it is:

• a long-term exercise programme requiring a relatively high level of commitment from

participants

• a relatively boring exercise programme consisting of running and walking only

• similar to a rehabilitation programme in that it is of fixed duration with a clear aim of

achieving a specific performance goal in that time

The programme consists of undertaking 3x weekly exercise sessions for 9 weeks, with sessions

building up from a combination of short runs and walks to a full 30 minutes running, and is

currently delivered via podcast1. The simplicity (and relatively boring nature) of the task places

great importance on the ability of the ‘C25K coach’ robot to provide engaging and appropriate

social supporting behaviour. In tackling the C25K programme, this work also addresses two

key interaction features not yet considered in the previous application of SPARC: long-term

interaction and personalisation of robot behaviour, such that the resultant system should be able

to identify what actions to do, when and for who.

4.2 Technical Approach

The exact role of robot, as well as its action and input spaces, were co-designed with a domain

expert (a fitness instructor from the University of the West of England Centre for Sport) over 6

co-design sessions between the author, fitness instructor and occasionally an additional member

of the supervisory team. These sessions were conducted over a period of 5 weeks and represent a

total of 12.5 hours direct co-design work as described in Table 4.1. More detail on these sessions,

and how they fit into the larger ‘IML as participatory design’ process posited by this work, is

given in Chapter 5.

4.2.1 Assumptions and Limitations

Clearly the interactions between an exerciser, their exercise programme and their fitness in-

structor are hugely complex. Studies looking at factors affecting adherence to a programme have

identified a huge range of factors that might influence both immediate and long-term engagement

1https://www.nhs.uk/live-well/exercise/get-running-with-couch-to-5k/
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Session (length) Design Activities
1 (2 hours) Interaction scenario was presented to fitness instructor for initial/unbiased recommendations, researcher then

shared pre-prepared suggestions based on previous work to brainstorm initial key actions/inputs
2 (2.5 hours) Visited gym that will be used for the study

Fitness instructor conducted mock Couch to 5km session with a supervisor observed and filmed by the author
Physical prototyping of the teaching interface tablet

3 (2 hours) Took draft tablet teaching interface to the gym, fitness instructor put the author through mock session choosing
actions via the tablet interface and verbalising what he was doing/why (action choices were stored via the tablet
interface and the instructor’s use of the tablet was also video recorded)
Author and fitness instructor went through resulting video footage to further discuss what participant
information may have been informing his action choice

4 (2 hours) Went through the action space to discuss specific utterances/examples for each action
Produced heuristics for a rule-based, autonomous system (discussed in Chapter 5)

5 (1 hour) Dictionary of specific utterances worked on predominantly by the fitness instructor alone
6 (3 hours) Tested the experimental set-up with the fitness instructor trying out both the teaching and participant role

Made final practical study decisions e.g. fitness instructor placement during the running sessions etc.

Table 4.1: Key participatory/co-design activities undertaken between the research team and
domain expert to develop the IML robot set-up including the naive robot action space, input space
and teaching interface.

with exercise, from a lack of belief about outcomes, depression and lack of interest to the weather

on a given day (O’Shea et al. 2007, Forkan et al. 2006). Similarly, the range of ways in which a

fitness instructor or other social presence can support and positively impact on that engagement

cannot simply be reduced to the idea of one role/persona with a discrete list of supporting actions.

Whilst a lot of care was taken to closely co-design the proposed system with the fitness instructor,

a number of simplifications and assumptions were made in framing the problem, and a number

of limitations result from the approaches employed. These reflect the overall scope, SAR framing

and research philosophy underpinning all of this work, as set out in Chapter 1.

The Role of the C25K Robot Coach

As described previously, the experimental interaction scenario, and the role of the robot within

that, was carefully co-designed with the fitness instructor. It was further informed by (i) results

from the studies presented in Chapters 2 and 3 and (ii) the overall mutual shaping/responsible

innovation approach taken throughout the work. This resulted in the following key decisions and

assumptions regarding the role of the robot in the context of delivering the C25K programme:

1. Ultimately the purpose of a C25K robot coach would be to assist rather than replace the

fitness instructor.

As made clear in Chapter 1, the aim of this work has never been to replace humans in the

context of socially assistive scenarios. Rather, the focus has been on understanding how

SARs might assist these vital workers in a meaningful way, such that the robot is a tool to

support human, expert led interventions. For the C25K robot coach specifically this would

mean that, during the programme defined exercise sessions, the robot would ultimately

be able to direct and encourage the pre-defined exercises with very little input required

from the supervising instructor. In turn, this assumes that in practice the instructor will
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actually be open to ‘handing over’ some responsibility to the robot such that his workload

would reduce as expected.

2. Building on the above, the role of the fitness instructor (and his visibility) is important in

the context of delivering the programme.

Whilst HRI studies typically attempt to minimise the presence and therefore potential

impact of human (e.g. researcher) presence, in this study it is acknowledged and actually

desired from the beginning that the role of the fitness instructor is somewhat explicit and

clear to the participants. Again, this results primarily from the overall aim of this work

regarding development of robots that would only ever form part of a human-led intervention.

Results will need to be carefully considered to understand the impact of the robot and the

instructor as independent social agents, but those results will be valid regarding how robots

might realistically be deployed, alongside humans, in the real world.

3. Whilst also providing social support, the robot will be explicitly providing task instructions

and therefore takes a somewhat authoritative role with regards to the programme.

Like the studies in Chapters 2 and 3, the C25K scenario requires the robot to guide users

through a series of prescribed tasks that they may have little motivation to do. As the robot

provides the task instructions and related encouragements, it fundamentally attempts to

be somewhat authoritative to the participant. It is important again to recognise that this is

just one role/dynamic a SAR might take with regards to effecting user behaviour change

through social influence, and will not be appropriate for all use cases/all users in other

socially assistive scenarios.

Lack of Technical Running Assessment/Feedback

It was decided early on that the robot coach would not attempt to assess and provide feedback

on participants’ specific running technique. This would require complex capture and kinematic

modelling of participants’ movements, requiring additional, non-trivial technical development. In

addition, giving such feedback was considered to be high risk, in that incorrect feedback could

lead to participant injury. As such, it was decided that correcting technique or providing other

specific advice like this would be left to the fitness instructor, only to be done outside of exercise

sessions unless a participant was actively at risk when they were exercising with the robot.

The Consistency of Expert Demonstrations

The expert-in-the-loop IML approach inherently assumes that the expert teacher will be

consistent in their use of the system and hence their generation of training data. Some variation

is to be expected, e.g. different types of actions might become more appropriate as the programme

progresses. This is ‘good’ variation that it is desirable to capture with the IML system. However,

successful learning of such variation requires at least some of the factors informing these changes
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(e.g. progression through programme) to be included in the system input space, which requires

successful identification of them ahead of system deployment.

In addition, outside of these factors, the consistency of the expert is not guaranteed. Just

like participants, the expert’s interactions with the system can be affected by short term factors

such as mood and fatigue, and over the longer term will no doubt change over time based on

familiarity with the system, increased understanding of its potential etc. Further, it seems likely

that as the IML system starts generating suggested actions, these might influence the expert

to e.g. accept a suggestion even if it wasn’t an action they would have executed had they not

been prompted. The underlying assumption is therefore that, over time and averaged out across

numerous training examples, the expert will ultimately be guided (albeit subconsciously) by a

fairly consistent action policy that the IML system will learn to replicate, and that this will not

be unduly influenced by suggestions coming from the IML system itself.

Training and Evaluating IML within the Same Study

In this work, a single study (representing end-to-end delivery of the fixed term Couch to 5km

programme) is used both to train the IML system and test its resultant autonomous behaviour.

This means that the autonomous behaviour of the system is only tested in sessions that are

late within the study and Couch to 5km programme. Engagement in the programme at this

point, as well as evaluation of the robot, will likely be shaped at least in part by the long-term

interactions participants have had with the system/instructor. Similarly, quantitative evaluation

of this autonomous behaviour will require it to be compared to similar supervised sessions, also

late in the programme. As such, this study set up doesn’t allow for any testing of how well the

system would autonomously perform in earlier sessions in the programme (which have more

walks and shorter bursts of running) nor if/how well the autonomous system could generalise to

new participants.

4.2.2 Modelling the Robot Action Space

Conceptually, it was identified that the robot coach would provide two key action types:

1. Task Actions

Those which provide direct task-specific instructions to the user, i.e. when to transition

between walking and running according to the C25K programme.

2. Social Support Actions

Those designed to facilitate and encourage user engagement with the task (essentially

socially persuasive behaviours leveraging the social influence of the robot) e.g. celebrating

participant effort, demonstrations of sympathy etc. Note these could also include low

level/non-verbal behaviours, e.g. a change in proxemics.
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Social Supporting Actions Task Actions Low Level
Time Social Performance Reward Check User Animation Get Closer Back Off Run Walk Eye Colour

P Time Humour Maintain Praise - Animation - - Run Walk Green
C Time Challenge Speed Up - - - - - Run Walk Yellow

S Time
Challenge
Sympathise

Speed Down Praise Check PRE - - - Run Walk Blue

N - - - - - - Get Closer Back Off Run Walk White

Table 4.2: Full listing of Task and Social Supporting Actions for the C25K robot coach, all of which
can be described by a {action-type, style-modifier} pairing, plus application of style modifiers to eye
colour as an example of using Style to modify low level behaviour independent of specific actions.
‘Check PRE’ = Check Perceived Rate of Exertion. Style modifiers: P = Positive; C = Challenging;
S = Sympathetic; N = Neutral.

Action Type Description
Time Encouragingly referring to the amount of time remaining on the run/walk
Social A demonstration of ‘social support’/interaction such as giving encouragement or telling a joke
Performance Giving task-specific feedback to speed up, down or stay the same
Reward Praising the user for their effort/performance

Check PRE
Checking the user’s Perceived Rate of Exertion (PRE); asking the user how they are feeling
(with user response submitted via icons displayed on the chest-mounted touch screen tablet)

Animation
Performing one of Pepper’s stock, positively valenced, non-verbal animations (utilsiing sound,
movement and eye colour)

Get Closer Pepper ‘leans’ forward (chest tilts forward from the waist)
Back Off Pepper ‘leans’ backward (chest tilts backward from the waist)
Run Introducing the length of the next run and counting down into the transition from walking to running
Walk Introducing the length of the next walk and counting down into the transition from running to walking
Eye Colour Changing of Pepper’s eye colour

Table 4.3: A brief description of each of the robot’s action-types.

These actions can be additionally described and/or shaped by an overall mood or style. As

such, both Task and Social Support actions can be described by an {action-type, style-modifier}

pairing, as shown in Table 4.2. For example, a {Run, Sympathetic} action would have the robot

say “Ok now I know you can do this, next is a run for 5 minutes” whereas a {Run, Challenge}

action would have the robot say “Right I want to see you push hard on this next run for 5 minutes”

and a {Social, Positive} pairing results in a Humour action which might have the robot say “You

can call me Terminator because I’m going to make you run for your life!”. Further, it was noted

that style-modifiers could also inform lower level, non-action specific robot behaviour such as

proxemics and non-verbal communication cues. As a demonstrator for this work, styles were used

to set robot eye colour as shown in Table 4.2.

A brief description of each robot action-type is given in Table 4.3 and example dialogue for

each speech based {action, style} pairing is given in Table 4.4. Note that a dictionary of utterances

was created for each speech based action, with these utterances being cycled through each time

the action was used.
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Action-Type Style (Action) Example

Time
Positive Time You are flying through this run!!
Challenging Time Don’t you dare give up on me now, just a little longer!
Sympathetic Time Almost there, I know you’ve got this!

Social

Positive Humour Run! Run like you’re escaping the robotic revolution
Challenging Challenge Come on [name] show me what you’re made of!
Sympathetic Sympathise It doesn’t matter how you finish, even a bad run has its benefits
Sympathetic Challenge I’m afraid it doesn’t get easier, you only get tougher

Performance
Positive Maintain Great work, now keep that pace!
Challenging Speed Up Come on you can work harder than this! Could you turn the speed up?
Sympathetic Speed Down Woah there, let’s not burn out too fast...

Reward
Positive Praise I’m impressed, you’re doing great!
Sympathetic Praise I know this is hard but you’ve got it

Check User Sympathetic Check User How are you holding up [name] ?

Run

Positive Run Keep up this effort, now it’s time to run for [time]
Challenging Run Come on now let’s push hard on this next run for [time]
Sympathetic Run Come on you’ve got this, next up is a run for [time]
Neutral Run Ok, let’s switch to running for [time]

Walk

Positive Walk Great job! Now let’s switch back to walking for [time]
Challenging Walk Keep it strong now with a fast walk for [time]
Sympathetic Walk Ok, I know that was hard, let’s switch back to walking for [time]
Neutral Walk Time to think about slowing it down now. Bring it down to a walk for [time]

Table 4.4: Example dialogue for each speech based action-type, style action pairing implemented
for the C2K robot coach. Note that a dictionary of utterances was created for each speech based
action, with these utterances being cycled through each time the action was used.

4.2.3 Interaction Features and Input Space

Four key interaction features were identified in considering what input space might be required

to inform a socially intelligent action policy covering both Task and Social Supporting Actions:

1. Task State

Describes non-performance related task information e.g. timing information, task the user

should be undertaking (walking or running).

2. Task Performance.

Describes if/how well the user is performing the prescribed task.

3. Task Engagement

Captures to what extent the user is engaged with the prescribed task, recognising effort

as being distinct from performance. Also note that this can include instantaneous as well

as longer-term measures (e.g. speed during sessions versus overall attitude towards task

outside of sessions).

4. User Personality

e.g. Big Five personality traits (Gosling et al. 2003) and other measures of attitude/motivation.

Full consideration of these categories requires an input space that combines static data, which

does not change over the course of interaction, and dynamic data, which updates during the
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Type Feature Values Description
Task State Task Action Type 0, 0.5, 1 Whether participant is in warm-up, walk or run

Session Progress 0-1 Time spent in session/session duration
Programme Progress 0-1 Time spent on programme/programme duration
Programme Action Progress 0-1 Time spent on current walk or run action/action duration
Programme Action Duration 0, 0.5, 1 Current walk/run action length as ≤ 3 mins, ≥ 20 mins or other
Time Since Last Action 0-1 Time since last action/60; capped at 1

Task Performance Relative Speed: Average 0-1 Current speed/(2 x average speed)
Relative Speed: Best 0-1 Current speed/(2 x personal best speed)

Task Engagement Heart Rate 0-1 Heart rate/2x resting heart rate capped at 1
(Dynamic) Motivation/Effort 0, 0.5, 1 Self-reported measure in warmup/on check PRE action

Facial Expression: Lip Pull* 0-1 Normalised action unit returned by OpenFace
Facial Expression: Mouth Open* 0-1 Normalised action unit returned by OpenFace

Task Engagement Elaboration level (self) 0-1 Normalised sum of 3 Likert questions (derived from [anon. ref])
(Static) Elaboration level (expert) 0-1 as above but rated by fitness instructor

Activity Level 0-1 Likert question response
User Extroversion 0-1 Big Five measure normalised with respect to max score
Personality Agreeableness 0-1 Big Five measure normalised with respect to max score

Conscientiousness 0-1 Big Five measure normalised with respect to max score
Emotional Stability 0-1 Big Five measure normalised with respect to max score
Openness to Experience 0-1 Big Five measure normalised with respect to max score

Table 4.5: Input space of the 20 state features implemented for the dual learning system (both
style and action class learners utilised the same input space). The facial features marked * were
later removed due to unreliability during testing.

interaction, demonstrated by the features listed in Table 4.5. Of particular interest are the Task

Engagement measures, which include both static and dynamic measures. Specifically, these aim

to capture an overall motivation with regards to the task and longer-term interaction scenario,

as well as more instantaneous, in-session engagement/effort.

4.2.4 Dual Learner System

The composition of actions as {action-type, style-modifier} lends itself to a dual learning system,

with the overall learner actually containing a ‘style learner’ and ‘action learner’; with each of these

learners wrapping a classification algorithm suitable for use in IML. The output of these can be

combined to generate actions, and the output of the style learner specifically can additionally

be applied directly to low level behaviours as per Table 4.2. The overall information flow from

the fitness instructor, into the dual learning system and then to the robot behavioural outputs is

depicted in Figure 4.2.

4.2.5 IML System Architecture

A simplified schematic of the system control architecture is shown in Figure 4.3. All nodes

communicate through the Robot Operating System (ROS) (Quigley et al. 2009) with a number

of custom, study-specific ROS message types being implemented to describe e.g. the different

types of actions. Communication with/control of the Pepper robot is done using NAOqi, Softbank’s

multi-platform operating system2.

2doc.aldebaran.com/2-5/index_dev_guide.html

106



4.2. TECHNICAL APPROACH

Figure 4.2: Overview of how expert initiated/evaluated actions are utilised in generating training
data for each learner, and in turn how learner output is then utilised in generating robot
behavioural output. Outputs from the Action and Style Learners are combined to create {action-
type, style-modifier} pairings to result in actions, whereas output from the Style Learner can also
be applied directly to (i) task actions and (ii) low level, non-verbal robot behaviours (i.e. eye colour
for the C25K coach) to give an impression of the robot having an overall underlying ‘mood’.
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Figure 4.3: A representation of the system architecture used for learning from the fitness
instructor and ultimately generating autonomous robot behaviour in guiding users through the
C25K programme.
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Figure 4.4: Pages of the teaching interface with Social Support actions (to be triggered as action
exemplars, when necessary, by the instructor) organised by style.

4.2.5.1 Teacher Interface

The Teacher Interface (1) is used by the fitness instructor to i) initiate robot actions directly

(providing expert exemplars as per Figure 4.1) and ii) respond to learner suggestions (including

the suggested styling of Task Actions). Actions allowed to time-out at the interface, receiving no

response from the fitness instructor within the given timeframe, are considered passively accepted

and allowed to auto-execute. The teaching interface is coded in QML and runs on a touch-screen

tablet held by the teacher during exercise sessions (shown in Figure 4.8). This interface was also

co-designed with the instructor for maximum usability and ease of use during training/system

supervision. Figure 4.4 shows the basic design of the tablet interface with regards to Social

Support actions that the instructor could trigger as desired. Figure 4.5 then shows the tablet

interface in use, presenting the instructor with (i) a Learner suggested Social Support action and

(ii) Learner suggested styling of a Task Action.

4.2.5.2 External Sensors

Dynamic task data requiring the use of external sensors were addressed as follows:

Heart rate: captured via a polar H10 Bluetooth heart rate sensor3 worn on the user’s chest.

Raw output (in beats per minute) was displayed on the teacher interface, but for learning purposes

was normalised with respect to user resting heart rate (see Table 4.5)

3polar.com/uk-en/products/accessories/polar_h10_heart_rate_sensor
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Figure 4.5: The C25K teacher interface in use, presenting the instructor with (i) a Learner
suggested Social Support action and (ii) Learner suggested styling of a Task Action.
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Figure 4.6: The C25K Robot-mounted tablet showing the ‘Check PRE’ action, with the robot’s
speech in subtitles and icon-based buttons for the user to respond to its question.

Treadmill speed: read and automatically digitised from treadmill display using a treadmill

mounted camera. Raw output (in miles per hour) was displayed on the teacher interface, but for

learning purposes was normalised with respect to users’ average and personal best speeds, which

were iteratively updated (at the end of every session) during robot deployment.

User Perceived Rate of Exertion (PRE): users were asked e.g. ‘How are you feeling’ by the

robot, and asked to respond via the robot-mounted tablet (described below).

Facial expression: real-time extraction of ‘lip pull’ and ’mouth open’ facial action units using

OpenFace (Baltrusaitis et al. 2018) via a treadmill mounted camera. The robot’s camera was not

utilised due to the robot’s positioning (the robot was not directly in participants’ line of sight - see

Figures 4.7 and 4.8).

An external tablet was used in place of the robot’s tablet to allow for direct connection to

the ROS architecture. A simple user interface was coded in QML, through which users could

trigger start of sessions by selecting their user icon, respond to the robot’s Check PRE action

(responding to e.g. ‘How are you feeling’ by selection an appropriate good, ok, not great response

icon - see Figure 4.6) and view subtitles of the robot’s speech (published via ROS messages by the

Behaviour Manager (5) at the time of action execution).

Additionally, there are two key databases within the architecture. Firstly, the User Record

contains both static (pre-hoc collected data such as personality scores, activity level) and dynamic

(e.g. time spent on programme, average and personal best speeds) user data. Secondly, the

Programme Database (within the Programme Manager) identifies the timing of Task Actions for

each exercise session according to the C25K programme.
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4.2.5.3 State Analyser

The State Analyser (3) collects data from all input sources: external sensors, programme manager,

internal clock etc. in order to produce the 20-dimensional input state used to describe the

interaction (see Table 4.5). The state analyser receives data from sources at whatever rate those

sources publish, but is set to publish specifically at 2Hz. This was selected as a reasonable base

frequency that would allow for high responsiveness to changes in state without overwhelming

the system. This also therefore represents the rate at which the Learner (5) is passed new input

states and asked to make suggestions.

4.2.5.4 Action Moderator

The Action Moderator (4) facilitates the passing of actions between the fitness instructor, learner

and robot. This includes:

• receiving Task Actions from the programme manager and applying the latest learner-

suggested style before sending to the teacher interface for validation

• publishing appropriate style and action training examples to the Learner (5) based on

actions initiated and/or validated at the Teacher Interface (1)

• relaying Learner (5) suggestions to the Teacher Interface (1) managing a priority queue

based on action type and limiting the rate of action suggestion

• relaying fitness instructor initiated/accepted learner-suggested actions to the Behaviour

Manager (6) managing a priority queue based on action type

In undertaking the above, the action moderator also accounts for timing requirements around

(i) programme actions needing to be sent to the teacher tablet in advance of their programme-

specified execution time and (ii) the time taken to actually validate and execute actions. Learner-

suggested Social Support Actions suggestions made when the tablet was already displaying an

action, or when the system was already executing an action, were disregarded. Task Actions were

always given maximum priority and were never allowed to be disregarded by the queuing system

as their timing was crucial to delivering the C25K programme.

‘Style Update’ Actions (for changing robot eye colour change) were generated by the Action

Moderator when the Learner suggested style was different to the current style. These actions

were automatically verified without fitness instructor approval (to reduce instructor workload),

and had the lowest priority within the queuing system, so would be disregarded in favour of any

Task or Social Supporting Action received by the Action Moderator ahead of their execution. As

a reminder, the use of eye colour to denote current robot ‘mood’/‘style’ was selected as a simple

proof of concept for using the Style Learner to inform low-level robot behaviour independent of

Task and Social Support Actions.
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4.2.5.5 Learner

The Learner (5) is responsible for accepting training examples and generating suggested styles

and Social Support Actions. It wraps generalised machine learning algorithm instances (one

for style and one for action-type), interpreting the input/output between them and the wider

system. This makes it easy to switch between different classification algorithms. The Learner is

event driven primarily by the receipt of training examples and input states, demonstrated by

the example code excerpt presented in Algorithms 1 and 2. Two classification algorithms were

trialled during testing - a multi-layer perceptron and an adapted k-nearest neighbour (KNN)

algorithm (detailed below); with the KNN resulting in the better performance.

Receipt of a new state calls the prediction functions of the style and action-type learning

algorithm instances. The resulting suggestions are then used to compose style and action sug-

gestions. Social Supporting Action suggestions are composed through combination of the style

and action-type suggestions according to the pairings in Table 4.2. If such a pairing does not

exist, then no action suggestion is returned. The resultant output for one action-type and two

different styles is shown in the final code excerpt presented in Algorithm 2. In line with the state

analyser update rate, these prediction functions will be called at a frequency of 2 Hz, such that

the Learner can be responsive to changes in e.g. user behaviour that require a response. However,

the overall action suggestion rate is expected (and desired) to be much lower, such that many

state inputs yield a return of no action suggestion.

Following Senft et al. (2019) on receipt of an expert-initiated/evaluated action, a reward value

is generated according to its validation status (see Algorithm 1). Teacher-initiated actions and

teacher-accepted learner-suggestions are given a reward of 1. Passively accepted suggestions are

given a reward of 0. Learner-suggested actions that are refused by the expert are given a reward

of -1. The action-type and/or style is then enumerated via a dictionary to create {state-label-reward}

tuples which are added to the respective collections of instances representing classifier training

data. Note that Task Actions generate style training data only, as the action-type is pre-set by

the C25K programme. Use of these rewards in the context of making suggestions is shown in

Algorithm 3.

4.2.5.6 Behaviour Manager

The Behaviour Manager (6) turns validated actions into explicit robot commands and executes

them via the NAOqi ROS bridge. Dialogues to be used in speech-based actions are stored in

dictionaries for each permissable {action-type, style} combination. To identify which specific

dialogue to execute for a given action, the behaviour logs are checked to identify which dialogue

was used last time the current user saw this action. The next listed dictionary entry is then

selected, until all dictionary listings have been exhausted in which case the first dictionary entry

is used and iteration through the dialogue begins again.
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Algorithm 1 Processing of an Social Supporting Action training example.
Input: Action e ({action, style}, state)

a = e.action
s = e.style
x = e.state
if a.validation == EXPERT_INITIATED or ACCEPTED then:

r = 1
else if a.validation == PASSIVE_ACCEPTED then:

r = 0
else if a.validation == REFUSED then:

r =−1
end if
ca = (a,x,r)
cs = (s,x,r)
actiontype_learner.add_instance(ca)
style_learner.add_instance(cs)

Algorithm 2 Example creation of a Social Support Action suggestion on receipt of a new input
state.
Input: new state x:

suggested_style = style_learner.predict(x)
suggested_action = actiontype_learner.predict(x)
if suggested_style != NONE then

create_update_style_action(style)
if suggested_action != NONE then

if action == SOCIAL then
if style == POSITIVE then

suggested_action = [HUMOUR]
...

else if style == SYMPATHETIC then
action = random_choice[SYMPATHISE, CHALLENGE]
suggested_action = [SYMPATHETIC, action]

4.2.6 Supervised Learning: Information Flow

The following subsections describe example processing of a teacher-initiated and learner-suggested

action respectively, to demonstrate the flow of information through the architecture during super-

vised operation of the system.

4.2.6.1 Teacher-Initiated Actions

1. The fitness instructor chooses an action via the Teacher Interface (1)

2. This is received by the Action Moderator (4) and
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Algorithm 3 Adapted KNN algorithm logic for generating suggestions; used for both style and
specific action class (shown here as applied to style suggestions). Note that the threshold used to
decide whether suggestions get proposed to the supervisor is dynamically updated as new tuples
are added to the collection of instances (following Senft et al. (2019)).

Input: x′ current state ; CS collection of style instances cs = (s,x,r) S ensemble of styles present
in CS

Output: suggested style πS(x)
for all s ∈ S do

for all p = (x,r) ∈ CS do
compute similarity ∆ between x and x′: ∆(p) = 1 -

∑n
i=1(x′(i)−x(i))2

n
find closest pair p̂ = argmaxp∆(p)
compute expected reward r̂(s) for applying s in state x′: r̂(s)=∆(p̂) · r(p̂) where r(p̂) is

the reward r of the pair p̂ = (x, r)
select the style with the maximum expected reward: πS(x′)= argmaxs r̂(s)
if r̂(πS(x′))> threshold then

propose πS(x′) to supervisor

a) published as a robot action to be executed via the Behaviour Manager (6) according to

priority queue management

b) published as an action-type and/or style learning example.

3. Learning examples are received by the Learner (5) where they are paired with the latest

input state received from the State Analyser (3), and a reward r=1 to create state, action-

type/style, reward tuple(s) which are added to the relevant training dataset(s) as per

Algorithm 2

4.2.6.2 Learner-Suggested Social Supporting Actions

1. The Learner (5) receives a new input state which is used to generate a suggested Social

Supporting Action

2. This is received by the Action Moderator (4) and relayed to the Teaching Interface (1)

according to priority queue management

3. The suggestion is displayed on the Teaching Interface (1) through highlighting of the

relevant action icon. There are three ways in which the fitness instructor can respond,

representing three validation states a validated action can take:

a) accept the action suggestion within 10s (accepted)

b) refuse the action suggestion within 10s (refused)

c) wait for the action suggestion to time out, in which case it will be considered passively

accepted
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4. The resultant evaluated action is fed back to the Action Moderator (4) and:

a) if accepted or passively accepted, published as a robot action to be executed via the

Behaviour Manager (6) according to priority queue management

b) published as a style and/or action learning example, received and processed by the

Learner (5) as previously described

4.3 Real World Deployment: Learning & Evaluation Study

An experimental protocol was developed to allow for training of the system, and then testing of

the resultant autonomous behaviour, all within the context of delivering the fixed-term C25K

programme. The protocol was also designed to allow for comparison of the IML system to a

heuristic based alternative, but this is discussed in detail in Chapter 5. Additional observations

regarding mutual shaping effects are also presented in that chapter. The research questions

and results presented in this chapter are specifically concerned with investigating whether the

approach taken was practical (as a process) and resulted in in appropriate autonomous robot

behaviour. The study was approved by the University of the West of England Research Ethics

Committee.

4.3.1 Research Questions and Hypotheses

RQ1 How does the fitness instructor utilise and interact with the IML system?

H1A The co-designed action space and teaching interface will allow the fitness instructor

to ensure an appropriate robot action policy during supervised sessions.

H1B Fitness instructor use/supervision of the system will result in personalised action

policies for each participant.

H1C The IML system will reduce the fitness instructor’s active workload over time: the

number of Learner suggested actions which are accepted will increase and the amount

of unprompted actions triggered by the instructor directly will decrease.

RQ2 Is the IML approach (and the amount of training data captured during initial phases of the

study) sufficient to create appropriate autonomous robot behaviour?

H2A The autonomous robot will utilise the entirety of the co-designed action space in a

similar way to the fitness instructor.

H2B The autonomous robot will demonstrate personalised behaviour across participants.

H2C Participants will not notice the switch from supervised to autonomous control of the

robot, and will not evaluate the (autonomously running) robot significantly differently

on post-session measures.
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Figure 4.7: Overview of the experimental setup.

H2D The fitness instructor will evaluate the autonomous behaviour as being appropriate

and effective.

RQ3 What is participants’ experience of undertaking the Couch to 5km programme (with the

C25k robot coach/fitness instructor) as per the experimental setup?

H3A Overall participant experience of the programme will be positive, with specific refer-

ence to the robot as a motivational aid.

H3B The (background) presence of the fitness instructor will be a factor in participants’

acceptance/positive experience of working with the robot.

4.3.2 Gym Installation and Setup

The robot was installed in a university operated gym, on the University of the West of England’s

Frenchay campus, that was closed to any other users for the duration of the study. The experi-

mental setup is depicted in Figures 4.7 and 4.8. The fitness instructor involved in co-designing

the action/input space was also employed (paid at his normal hourly wage) to be the system

‘teacher’ and to observe/facilitate all sessions.

4.3.3 Participants

Participant recruitment was conducted through an advertisement and preliminary information

sheet being shared via email (particularly via staff mailing lists to target those working on

campus) and social media. Full details of the recruitment materials and pre-requisites are given

in Appendix C. Importantly, whilst the advertisement indicated the study was about whether

machine learning could be used to have a human expert train the robot, it did give any details on

exactly how this machine learning setup would work, and the potential for varying autonomy was
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Figure 4.8: Final experimental set-up; photograph of an exercise session undertaken during the
study. Shows fitness instructor and robot position with regard to the participant, and the fitness
instructor’s use of the teaching interface to control/supervise the robot.
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not mentioned. Health related inclusion criteria were relatively minimal given that the C25K

programme is designed for people of all abilities, but the advertisements did attempt to target

people who were somewhat interested in taking up running but did not run excessively already.

10 participants (4 male/6 female, age range 26 to 60 with mean 36.2) were recruited to take

part in the study. One participant (female) dropped out midway through the study, their data

were still used for training the system but have been excluded from detailed analysis of system

use/performance. Participants were not required to be existing university gym members and were

neither required to pay any sort of membership fee nor compensated for their participation in the

study.

4.3.4 Fitness Instructor

The fitness instructor (male, 24) was recruited through the UWE Centre for Sport, whom also

facilitated hosting the experiment with regards to gym access, insurance etc. He is a fully qualified

instructor, employed by the Centre to lead group exercise sessions and offer personal training.

He holds a CYQ Level 2 in Gym Instruction and Gym-Based Exercise and a YMCA Level 3 in

Personal Training. He has worked in the fitness industry for 5 years, 3 of which have been at the

UWE Centre for Sport. He also holds a BSc in Biological Science.

4.3.5 Conditions

Over the course of the in-the-wild testing, participants worked with the IML system and a

heuristic based control, according to a specific testing schedule detailed in the following subsection.

In total, participants saw three versions of the robot coach:

1. IML-Supervised (IML-S): The IML system as supervised/ultimately controlled by the fitness

instructor, i.e. with him generating unprompted actions and responding to system generated

action suggestions to generate training data.

2. IML-Autonomous (IML-A): The IML system allowed to run autonomously, i.e. with no

additional actions generated nor suggested actions refused by the fitness instructor.

3. Heuristic: A heuristic based system, using heuristics derived during initial co-design and

updated with the fitness instructor between study Phases 1 and 3 (Heuristic (v1) and (v2)

per Table 4.7).

The Heuristic system was designed to represent the output of traditional participatory design

approaches, as an alternative way to generate expert-informed behaviour autonomously. Like

the IML system, the Heuristic system was also designed to generate social supporting actions to

supplement the C25K programme-set Task Actions. The purpose of designing this system was

act as a form of control condition, specifically to compare to the ‘IML as participatory design’
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methodology proposed by this work. Further details about this system, and results comparing

the resultant autonomous behaviours are therefore given in Chapter 5, where this methodology

is presented and critiqued in full.

Importantly, whilst participants were made explicitly aware that they were testing out

two different versions of the robot when seeing the IML-S and Heuristic systems, they were

not given any indication as to how those robots were supposed to be different or how they

were programmed/controlled differently. In contrast, the switch from IML-S to IML-A was

done covertly with participants not being made aware of any change in the robot’s control.

Throughout the programme, no detail concerning the robot’s learning process nor the actual

supervisory mechanism concerning the fitness instructor’s ultimate control of the robot was given

to participants. As such, whilst participants were vaguely aware that the role of the instructor

was to ‘teach’ the robot as per the information sheet, they were never explicitly told how this was

implemented. This is reflected in data collected on participants description of the instructor’s role

in the study/delivery of their exercise sessions, presented and discussed in Chapter 5.

4.3.6 Testing Schedule

The testing schedule was designed around delivery of the C25K Programme. Exposure to the

three conditions/versions of the C25K coach was split across three key testing phases, as described

below. Completed in full, with no breaks, the C25K programme takes 9 weeks to complete. Use of

the gym was limited to a maximum of 12 weeks from when the study began, for which the robot

was installed throughout, representing some flexibility for, but also a hard limit on, the ability

to offer catch-up sessions in the case of participant/fitness instructor absence. As such, each

participant’s specific testing schedule was equivalent at the beginning (with the first 8 sessions

alternating the IML and Heuristic robots) but updated dynamically toward the end of the study

based on participant attendance and completion of sessions to ensure they all (i) completed one

session with the updated Heuristic robot and (ii) completed at least two sessions with the IML

system running autonomously. An example for participant LB, showing how each test phase

related to specific C25K sessions and robot conditions, is given in Table 4.6. A full breakdown of

how many sessions each participant completed, and which version of the robot they saw when, is

given in Table 4.7. Training data was collected during all IML-S training sessions in Phases 1

and 2 of the study.

• Phase 1 [8 sessions per participant]: Participants alternated between the IML-S and H1

robots each session, for a total of 4 sessions with each. It was made explicitly clear that

the two robots were programmed differently (each robot was colour coded either orange or

purple using a simple paper neck collar) but not it was not explained how they were different.

Condition ordering and colour labelling were randomly assigned to and counterbalanced

across participants.
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Phase 1 Phase 2 Phase 3
S# 1 2 3 4 5 6 7 8 9 ... 22 23 24 25 26 27
Cdn H1 IML-S H IML-S H2 IML-S H IML-S IML-S IML-A IML-A H IML-A IML-A

Table 4.6: Experimental testing schedule for participant LB, who completed all 27 Couch to 5km
sessions. S# is the C25K session number, and Cdn is the robot condition.

• Phase 2 [9-13 sessions per participant]: Participants worked exclusively with the IML-S

robot as it continued to be trained by the fitness instructor. The robot was still labelled and

referred to as either the purple or orange accordingly.

• Phase 3 [3+ sessions per participant]: Participants unknowingly worked out with IML-A

robot (i.e. they were not briefed about the change in robot control in any way) for two

sessions before the updated H2 robot was explicitly re-introduced. Again, to hide the

difference between the IML and H systems, participants were told (fictitiously) that while

they’d been working with e.g. the purple robot the ‘other half of the group’ had been working

with the orange robot, or vice versa, and now they were once again being given another

opportunity to test and compare the two systems. Any remaining sessions after these were

run with the IML-A robot.

The above highlights a key limitation resulting from supervised training and evaluation

being conducted in the same study. Specifically, the sessions used to demonstrate and evaluate

autonomous robot behaviour were quite late within the robot’s deployment and C25K exercise

programme, in sessions when participants might already be quite independent in their exercising.

Additional studies with new participants might be utilised to consider how well the trained

system would perform in earlier sessions of the programme, but the complexities arising from

dynamic changes between participants and the robot, instructor and exercise programme itself

as that progresses would make like-for-like comparison very difficult.

4.3.7 Experimental Measures

As per the input space of the learning system presented in Table 4.5, a range of data concerning

participant performance and task engagement were collected as part of the training data. Con-

tinuous state data, including all raw sensory readings used to produce those 20 learner input

features was logged at the same rate it was published to the system (2 Hz) with each state reading

being given an unique identifier. Ideally, participant task engagement/performance would be

compared across robot conditions to give objective measures of the impact of robot behaviour on

participant behaviour. However, it was decided early on in the design of this study that such data

would not form part of the formal experimental measures because:

• the complex testing schedule and nature of the C25K session progression makes it difficult

to achieve controlled within-subject testing of the impact of robot conditions from session to
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Participant Supervised (total) Heuristic (v1) Heuristic (v2) Autonomous Total
LB 2,4,6,8,9*,10-22 (18) 1,3,5,7 25 23,24,26,27 27
FB 2,4,6,8-21 (17) 1,3,5,7 24 22,23,25,26 26
DB 1,3,5,7,9-18* (13) 2,4,6,8 21 19,20,22 22
JF 1,3,5,7,9-22 (18) 2,4,6,8 25 23,24,26,27 27
MR 2,4,6,8-18 (14) 1,3,5,7 21 19,20,22 22
DP 1,3,5,7,9-21,24 (18) 2,4,6,8 27 22,23,25,26 27
JW 1*,3*,5,7,9-13,15,16,20-22 (14) 2,4,6,8 25 23,24 25
GB 2,4,6,8-21,23 (18) 1,3,5,7 26 22*,24,25,27 27
PT 2,4,6,8-18 (14) 1,3,5 21 19,20,22 22
MB 1,3*,5„9-10,12-14 (7) 2,4,6,8 - - 14
Total: 151 40 9 32 232

Table 4.7: Total number of experimental sessions conducted broken down per participant and
experimental condition/robot automation strategy. Sessions marked* were subject to some techni-
cal issue(s) affecting robot performance and/or data collection. Note that participant MB dropped
out after 14 sessions, and so results from their sessions are no included in the following analyses.

session, with session to session variation likely to be significantly impacted by factors like

increasing session difficulty and increasing participant fitness etc.

• the small number of participants would reduce the extent to which any formal statistical

analysis would have meaning.

All actions suggested by the Learner (along with the fitness instructor’s response) or triggered

by the fitness instructor were logged throughout the study. State data was also captured and

stored at the system frequency of 2Hz. Each action log also therefore included the unique identifier

of the corresponding record of input state data (i) that triggered it (for Learner suggestions) or (ii)

was captured at the time of action selection by the fitness instructor (in the case of unprompted

actions). These logs were designed to allow for (i) post hoc simulations of sessions, (ii) post hoc

application of alternative machine learning methods/investigations regarding fitness instructor

action/style choices and (iii) allow for objective analysis of system performance.

Explicit experimental measures, designed to capture participant experience of the programme

and various robot conditions (as well as to detect whether participants noticed the switch

from supervised to autonomous operation of the IML system) were as follows. Copies of all

questionnaires, as administered to participants, are given in Appendix C:

1. A brief post-session questionnaire to be completed after every session: participants were

asked how they found the session and how they would rate the robot as a fitness instructor.

Included a 3-point emoji-based response (see Figure 4.9) as well as an open textbox.

2. A weekly ‘journal’ designed to be filled in in more depth with regard to their experience of

the programme and working with the robot
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3. A detailed questionnaire comparing the IML-S and Heuristic robots within-subject at the

end of Phase 1 testing. Results for this are presented in Chapter 5.

4. Another questionnaire very similar to (3) at the end of the study, also discussed further

in Chapter 5. However, pertinent to the work in this chapter, this questionnaire included

questions on whether participants’ perceived any change in either of the robot’s behaviour

over the course of the study. Regarding the overall study, participants were also asked to

discuss the role of the robot versus the fitness instructor, and for their overall thoughts on

using a robot for this purposes.

In all questionnaires, the two different versions of the robot (IML-S/A versus Heuristic)

were referred to as the Orange or Purple robots according to the participants’ colour convention

allocation. As a reminder: participants were never told about the differences in how these robots

were programmed/controlled, and were further told that whichever robot they had been working

out with, the ‘other half of the group’ have been working out with the other one (to minimise the

chance of participants suspecting that one robot was gradually learning/being ‘taught’ whilst the

other was not).

Figure 4.9: Emoji-based (Great / Ok / Not great) scale used in end-of-session participant and
fitness instructor measures as well as for participant response to the C25K robot’s Check PRE
action.

The fitness instructor was similarly asked to complete a post-session questionnaire similar

to (1) but this proved to be unmanageable as the study progressed and the free time between

back-to-back participant sessions reduced. Instead, he kept one overall journal of unprompted

notes regarding both system and participant performance that he captured in real-time alongside

supervising sessions.

4.3.8 Technical Limitations and Run-time Fixes

Facial Expression Input
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As the study progressed and participants were running faster, for longer, it became clear

that the facial expression tracking started to fail; likely due to vibrations from the treadmill

causing the camera image to blur. As such, the two facial expression features listed in Table 4.5

were removed from the input vector and the learning agent was re-trained based on all previous

training data with those two features removed.

Rate of Action Suggestion

As noted previously, successful automation would require the learning system to identify what

actions, when and for who. Preliminary testing of autonomous behaviour produced by the system

(ahead of Phase 3) suggested a failure to learn one key element of the when; that sometimes it is

actually most appropriate to do nothing. Dynamic updating of the policy suggestion threshold

failed to impact the rate of suggestions such that suggestions were made every time the learner

was passed an input state. This resulted in action suggestions being much too frequent and/or

repetitive.

A ‘safety limit’ constraining suggestion rate to 1 action suggestion every 10s had already been

coded within the Action Moderator to prevent the teacher tablet being rushed with suggestions,

as experienced during early testing of the supervised system. So, for Phase 3 of the study, after

discussions with the fitness instructor, this limit was increased to 30s. This matched the action

rate of the hard-coded Heuristic system, also resulting from earlier iterative testing with the

fitness instructor, with the motivation being that it would allow fairer testing of participant

experience of the action choices made by the learner when running in autonomous mode.

Integration of Cooldown into Robot Led Session

Initially, the programme database was set to contain only the walk/run segments, detailed by

the C25K plan, with a 5 minute warm up walk but no cooldown. It was assumed that participants

leaving the gym and walking back across campus and would suffice, and that the fitness instructor

would recommend and demonstrate some appropriate stretches. However as the programme

progressed and participants were being asked to run for 20 minutes or longer with no breaks, the

fitness instructor felt that a 3 minute cool-down walk ought also to be added to the mandated

programme.

This was only implemented for sessions 18 onwards and only from week 7 (out of 12) of

the robot being installed in the gym. For some participants, the transition to autonomous robot

behaviour was made as early as session 19, and at the start of week 7 participants could already

be up to session 21, so there was relatively limited training data available for this cooldown part

of each session. However, this does make for an interesting feature to study when considering the

Learner’s needs for training data, and potential to adapt to changes in the task, given its late

addition to the programme.
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Participant Expert Initiated (r = 1) Instant Accept (r = 1) Passive Accept (r = 0) Rejected (r = -1) Total Training Data
LB 736 132 70 603 1541
FB 615 125 68 530 1338
DB 617 106 63 248 1034
JF 773 130 59 603 1565
MR 715 147 58 511 1431
DP 874 78 74 390 1416
JW 613 85 41 417 1156
GB 730 111 59 503 1403
PT 684 100 83 457 1324
MB 425 68 39 257 789
Total: 6782 1082 614 4519 12997

Table 4.8: Total number of training data points (state-label-reward tuples) collected per participant
during supervised training sessions, broken down by validation type/reward value).

4.4 Findings

As summarised in Table 4.7, through the course of the study a total of 232 robot-led exercise

sessions were conducted, of which 32 were run autonomously using (exclusively) actions suggested

by the IML Learner, based on the training data collected during 151 supervised sessions. Table

4.8 lists the amount and type of training action examples (i.e. whether they were initiated by the

learner then accepted/refused or executed unprompted by the fitness instructor) collected during

the supervised IML-S sessions, broken down by participant. Details regarding system behaviour

and experimental results in these sessions is given below. Details of the Heuristic sessions (in

which the robot also operated autonomously) are presented in Chapter 5, as is more detail on

mutual shaping effects observed concerning fitness instructor-robot-participant interactions

throughout the study.

4.4.1 Example Session

Table 4.9 lists all the training action examples generated in an example supervised session

(participant LB session 22). Whilst a single session cannot offer much insight on overall system

performance, it does give a snapshot example of how the fitness instructor was using the system

towards the end of the training sessions, and the real-time interaction between him and the

Learner. In this session, it can be seen that the instructor accepts quite a few of the suggestions

made by the Learner earlier on in the session, and doesn’t seem to have to supplement these

with many additional unprompted actions. This does not hold for the second half of the session

however, where lots of refused suggestions and unprompted actions can be seen. The ∆t value,

which shows how long between the current action/suggestion and the last non-refused (i.e. fitness

instructor unprompted action or accepted Learner suggestion), demonstrates the variability in

rate of action execution. Two key observations can be made:

(i) There are numerous examples of the fitness instructor executing unprompted actions very

quickly (<10s) after another unprompted action/accepted suggestion. From the participants’
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Time (s) Action (∆ t(s) since last non-refused action) Time (s) Action (∆ t(s) since last non-refused action)
11 learner suggests positive praise - PA 1,111 learner suggests positive praise - R (1)
48 learner suggests sympathetic challenge - A (37) 1,151 learner suggests positive praise - R (42)
84 learner suggests sympathetic sympathise - R (36) 1,187 learner suggests positive praise - R (78)
99 instructor initiates positive maintain (51) 1,225 instructor initiates positive praise (116)
122 learner suggests positive maintain - R (23) 1,226 learner suggests positive maintain - A (1)
160 learner suggests positive praise - A (61) 1,262 learner suggests positive maintain - R (36)
169 instructor initiates positive maintain (9) 1,297 learner suggests positive praise (71)
200 learner suggests positive maintain - A (31) 1,334 learner suggests positive praise - R (108)
237 learner suggests positive maintain - R (37) 1,372 learner suggests positive praise - R (146)
274 learner suggests positive praise - A (74) 1,410 learner suggests positive praise - A (184)
283 instructor initiates sympathetic sympathise (9) 1,431 instructor initiates challenging challenge (21)
313 learner suggests sympathetic challenge - A (30) 1,443 learner suggests challenging challenge - R (12)
352 learner suggests sympathetic sympathise - R (39) 1,448 instructor initiates sympathetic challenge (17)
391 learner suggests challenging challenge - A (78) 1,477 learner suggests challenging challenge - R (29)
431 learner suggests challenging challenge - R (40) 1,506 instructor initiates get_closer (58)
470 learner suggests challenging challenge - A (79) 1,508 instructor initiates sympathetic time (2)
508 learner suggests challenging challenge - R (38) 1,513 learner suggests get_closer - A (5)
541 learner suggests challenging challenge - A (71) 1,518 instructor initiates challenging time (5)
576 instructor initiates positive praise (35) 1,546 learner suggests sympathetic time - R (28)
580 learner suggests challenging challenge - A (12) 1,560 instructor initiates challenging challenge (42)
617 learner suggests challenging challenge - R (37) 1,565 instructor initiates challenging time (5)
651 learner suggests positive praise - A (71) 1,584 instructor initiates challenging performance (19)
655 instructor initiates sympathetic challenge (4) 1,585 learner suggests challenging time - A (1)
684 learner suggests positive praise - R (29) 1,603 instructor initiates positive praise (18)
724 learner suggests positive praise - A (69) 1,620 instructor initiates positive social (humour) (17)
760 learner suggests positive social (humour) - A (36) 1,625 learner suggests challenging time - R (5)
800 learner suggests positive praise - R (40) 1,634 instructor initiates sympathetic time (14)
840 learner suggests positive praise - A (80) 1,651 instructor initiates positive social (humour) (17)
843 instructor initiates positive time (3) 1,657 learner suggests positive social (humour) - R (6)
875 learner suggests positive praise -R (32) 1,678 learner suggests positive style for cool down walk - A (21)
899 instructor initiates challenging challenge (24) 1,711 instructor initiates sympathetic praise (33)
907 instructor initiate sympathetic challenge (8) 1,713 learner suggests positive animation - A (2)
909 learner suggests positive time - R (2) 1,724 instructor initiates check_pre (11)
944 learner suggests positive praise - R (37) 1,736 instructor initiates sympathetic praise (12)
978 learner suggests challenging challenge - R (71) 1,747 learner suggests sympathetic praise - R (11)
1,011 learner suggests challenging challenge - R (104) 1,780 learner suggests sympathetic praise - R (44)
1,047 learner suggests get_closer - R (140) 1,817 learner suggests check_pre - R (81)
1,080 learner suggests get_closer - R (173) 1,856 learner suggests sympathetic praise - R (120)
1,082 instructor initiates positive praise (175) 1,896 learner suggests sympathetic praise - PA (160)
1,100 instructor initiates positive maintain (18) 1,929 learner suggests sympathetic praise - R (193)

Table 4.9: Example supervised session: full list of actions either suggested by the system (along-
side the instructor’s response coloured red -R for refused, orange -PA for passively accepted and
green -A for instantly accepted) or triggered by the instructor directly (highlighted in black, bold
font) during LB’s final IML-S (supervised) session. In the case of successful learning, it would be
expected that very few actions would need to be generated or refused by the fitness instructor.
Style updates (affecting robot eye colour) suggested by the system and automatically executed
according to the queuing system described in Section 4.2 are excluded for clarity.
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point of view, these ‘double-action’ combinations essentially resulted in a single action

(with a longer stream of speech) from the robot. This appeared to be something the fitness

instructor did repeatedly, intentionally, towards the end of the study. Based on his feedback,

this may have been a result of his perception that the range of dialogue had been over-used

and become repetitive/boring by this point.

(ii) There are segments from approx 900s onwards where there were lots of action refusals but

these were not ‘replaced’ by unprompted actions, i.e. few actions were executed at all (high

∆t). This was explicitly highlighted by the fitness instructor when reflecting on one of the

difficulties in supporting long, pure runs in comparison to the sessions composed of shorter,

alternate walking and running sessions. Specifically he suggested that on longer runs it

is sometimes best to let people ‘zone out’ and not to interrupt/distract if they were ‘in the

zone’.

This complex use of actions/action timing likely contributes to why the Learner failed to

produce an appropriate rate of action suggestion, as referred to in Section 4.3.8. Further consid-

ering (ii) as refused suggestions were not always replaced with unprompted actions, it wasn’t

necessarily true that the Learner’s suggestions were of the incorrect style or type. Rather, it

was simply more appropriate to do nothing at all. The concept of doing nothing as sometimes

being the best course of action represents something that the Learner fundamentally failed to

replicate, likely due to a fundamental flaw in the (i) dynamic threshold approach to limiting

action suggestions and/or (ii) the lack of encoding ‘do nothing’ as an actual ‘action’ available to

the system. In addition, given that only sessions 18+ were pure runs of this kind, only a relatively

small amount of the training actions/sessions were of this type.

However, Table 4.9 does show evidence for successful learning of a specific what action when

pairing. As discussed under Section 4.3.8, the cooldown walk was only integrated into the system

quite late on during the study, and LB was one of the participants furthest ahead with programme

progression by Session 18 (such that he was one of the first participants to be exposed to this new

cooldown section). As such, a high level of inappropriate/refused suggestions might be expected

during this period. However, the Learner did suggest an animation action at t = 1713s which

was accepted by the fitness instructor. This very much reflects the fitness instructor’s use of the

animation action almost exclusively within the cooldown period of the pure run sessions.

4.4.2 Usability for Generating Appropriate Action Policies (RQ1)

These findings are presented to ascertain whether the IML system design and implementation,

including the robot actions, the teaching interface and the Learner suggestion - fitness instructor

validation pipeline, allowed the fitness instructor to control the robot as desired. Specifically,

through executing unprompted actions and responding to Learner suggestions, the instructor

126



4.4. FINDINGS

should have been able to ensure an appropriate action policy was executed during all supervised

sessions.

4.4.2.1 Instructor Use of the IML System

Figure 4.10 shows the breadth and relative use of action/style pairings executed during the

supervised sessions (hence also representing the training data fed to the Learner). Note than

run and walk actions are included. Whilst these actions were fundamentally set by the C25K

programme their style could be set by the fitness instructor/Learner. It can be seen that whilst

some actions were utilised much more than others, the fitness instructor made use of the entire

robot action space available to the IML system. This demonstrates the utility of the co-designed

Social Support actions.

The example session presented in Table 4.9, as well as the cumulative plot of unprompted

actions and accepted/refused Learner suggestions in Figure 4.17, demonstrate that the fitness

instructor was able to actively manage the Learner’s suggestions (accepting appropriate actions

and refusing inappropriate actions) whilst still executing his own unprompted actions where

necessary. As such, the instructor ultimately retained control of the robot’s behaviour throughout

the supervised sessions. Three key observations suggest that through this control, the instructor

was able to generate an appropriate action policy. Firstly, as discussed under Section 4.4.1, the

instructor described the need to utilise different behaviours across the sessions that were made up

of alternate running and walking versus pure running. Figures 4.11 and 4.12 show the variation

in (i) relative action type/style use and (ii) number of actions executed (normalised against session

length) for these two types of supervised sessions.

Secondly, the adjustment of action policy was also demonstrated in the context of personali-

sation, with evidence that different actions/styles were utilised differently across participants

during supervised sessions. This is discussed in more detail in the following subsection. In

addition, post-session participant ratings of the robot as a fitness instructor were overwhelmingly

positive (as can be seen in Figure 4.26), suggesting the executed actions were effective and

appropriate. Finally, in a final post-study interview in which the instructor was asked how he

found the training process and whether he found the system intuitive to use, he stated:

“It was fairly smooth... and because we had designed it together, I knew exactly what I wanted,

where it was. And my sort of navigation around the system. So I mean, it made my implementation

of what I wanted pretty smooth."

These results provide strong support for H1A: the co-designed action space and teaching

interface will allow the fitness instructor to ensure an appropriate robot action policy during

supervised sessions. This likely results from the carefully considered activities of the co-design

process (as outlined in Table 4.1).
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Figure 4.10: Actions (and their style) executed during sessions supervised by the fitness instructor.
Grouped by (i) actions and styles as represented on the teaching interface (shown in 4.4) and (ii)
(action-type, style) pairings as per the abstraction of the instructor-designed actions presented in
Table 4.2.
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Figure 4.11: The relative use of each action and style across mixed versus pure run sessions
supervised/ultimately controlled by the fitness instructor. Whilst the differences may not be
statistically significant, they suggest the instructor adjusted the action policy, via supervised
control of the IML system, to account for the change in session type.

129



CHAPTER 4. CREATING AN AUTONOMOUS, SOCIALLY ASSISTIVE ROBOT WITH
INTERACTIVE MACHINE LEARNING

Figure 4.12: The number of actions used in mixed versus pure run sessions supervised/ultimately
controlled by the fitness instructor, normalised with respect to session length (in seconds). Note
that less actions were typically executed in the pure run sessions, in line with comments made by
the fitness instructor. This gives an objective demonstration of an action policy change described
qualitatively by the instructor and evidenced objectively in his supervised output of the system.

4.4.2.2 Personalisation

To investigate personalisation by the fitness instructor, data was compared across participants

for the last, common, supervised session of the programme that they all completed - session

17. Figures 4.13 and 4.14 show how style and action-type of actions executed varied across

each participant’s session 17. As an alternative way of demonstrating this variation, Figure

4.15 shows how full actions (combining action-type and style) executed in each participants’

session 17 contributed to the cumulative sum of actions across all participants’ session 17. If the

action/styles executed were very similar across all participants, then each participant should

contribute approximately 1/9th of the cumulative sum of each action/style combination. Clearly

this is not the case, e.g. with some actions only being used for a single participant.

Another element of personalisation that these figures fail to show is when what types of

actions were executed. For example, when the fitness instructor was asked to identify participants

he felt required very different training approaches, he identified LB vs MR, FB vs JF and GB

vs PT. The action distributions for MR and LB in Figure 4.14 don’t look significantly different.

However, Figure 4.16 shows there are clear differences in when those actions were executed

within the session. Together, these results provide strong support for H1B: fitness instructor

use/supervision of the system will result in personalised action policies for each participant.

Results on the importance of personalisation from Chapters 2 and 3 would suggest this personal-

isation would be driven by the fitness instructor (i) responding to participants’ instantaneous
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Figure 4.13: The style of executed actions across participants in the final, common, supervised
session that they all completed. Plotted firstly as raw data (showing the overall number of
actions varied across participants) and then normalised, demonstrating the instructor adjusted
the styling of actions across participants. If robot behaviour was informed only by programme
progress and not individual performance and personality, then we would expect (i) the number of
actions and (ii) the proportion of action styles to be approximately equal across participants.

performance/engagement and (ii) shaping robot behaviours based on his overall knowledge of

the participant and his perception of their relationship with the robot. The latter is particularly

evidenced by the instructor’s in-session notes, which often included comments on participants’

apparent engagement with the robot and/or whether e.g. they needed to be challenged more or

were already pushing themselves very hard.

4.4.2.3 Instructor Workload

Figure 4.17 plots the data described in Table 4.8 to show the progressive accumulation of un-

prompted actions, accepted Learner suggestions and refused Learner suggestions. This essentially

demonstrates how the fitness instructor’s interactions with the Learner developed over the course
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Figure 4.14: The action-type of executed actions across participants in the final, common, super-
vised session that they all completed. Plotted firstly as raw data (showing the overall number
of actions varied across participants) and then normalised, demonstrating the instructor ad-
justed utilisation of the action-types across participants. If robot behaviour was informed only by
programme progress and not individual performance and personality, then we would expect (i)
the number of actions and (ii) the proportion of action types to be approximately equal across
participants.
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Figure 4.15: The total of each action (and associated style) executed across all participants’
session 17, broken down by participant. The normalised version particularly shows the variation
across participants; if the action distribution was the same across participants then we would
expect each participant to contribute 1/9 of each bar.
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Figure 4.16: The cumulative sum of each action type throughout LB and MR’s (supervised) session
17; showing when each action type was used through the session to demonstrate this additional
element of personalisation in the fitness instructor’s supervised execution of actions. Whilst the
total instances of each action type isn’t that different between the two (as shown in Figure 4.14)
it can be seen that there are clear differences in when those actions were executed within the
session. For example, lots of social actions were used at the start of LB’s session, whereas reward
actions were used at the start of MR’s session. Similarly, performance actions were utilised much
earlier in MR’s session than in LB’s.
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Figure 4.17: Cumulative sum of actions (accepted suggestions, refused suggestions and un-
prompted exemplars) collected as training data, showing that there was little change in the rate
at which the expert was producing unprompted exemplars or accepting/refusing action suggested
by the learner. For successful learning and the related expected expert workload reduction,
we would expect the number of refused suggestions and unprompted actions to plateau as the
number of accepted suggestions continued to rise.

of the supervised sessions, up to the end of Phase 2 testing. Whilst there was a steady increase

in the number of accepted Learner suggestions, notably the graph shows no suggestion of a

decreasing rate in refusals of Learner suggested actions, nor a definite reduction in the rate of

unprompted actions.

In a given session, the overall ‘active’ workload of the fitness instructor is made up of the need

to (i) refuse inappropriate Learner suggestions (including style suggestions applied to fixed task

actions (i.e. the instructions to switch between running and walking) and (ii) generate additional

unprompted Social Supporting actions if required. Given the dual-learner setup of the system,

whereby task actions are reliant only on the output of the style learner, it is useful to consider

the Task and Social Supporting actions separately. Figure 4.18 plots the instructor’s response

to Learner suggested Task Action styling as training progressed, i.e. plotted for each session of

Phase 2 in chronological order. It can be seen that quite quickly, the instructor stopped needing

to overrule the Learner’s suggested style at all. This suggests the Learner was very successful in

learning what style or mood the robot should be in.

Figure 4.19 similarly shows how overall workload varied as training progressed, within the

context of the overall number of actions suggested by the Learner and executed unprompted by

the instructor. To support H1C: the IML system will reduce the fitness instructor’s active workload

over time, we would expect the number of accepted actions to increase whilst the number of

refusals and unprompted actions decreased. However, in the figure it can be seen that by the
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Figure 4.18: Plot of instructor response to Learner suggested task action styling across all
supervised sessions of Phase 2. Raw action numbers plotted first to highlight the actual number
of successful style suggestions. Noise in raw actions numbers is due to participants simultaneously
being at differing stages of the programme (hence experiencing a different number of task actions).
Normalised data also plotted for clarity. From approximately the 20th study session onwards, the
instructor accepted all Task Action style suggestions made by the Learner. Depending on progress
through the programme, this represented between 1 and 15 successful action style suggestions
per session.
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end of Phase 2, the instructor was still very actively refusing Learner suggestions - across all

participants’ final (common) supervised session (session 17) 72.4% of learner suggestions were

rejected and 27.6% were accepted. Similarly whilst the number of unprompted actions required

did seem to be generally decreasing, they still represented the majority of all executed actions.

Across that same final common supervised session, 76.0% of actions were generated by the

instructor with only 24% being accepted Learner suggestions. As such, there is very little support

for H1C. However, the success of suggested styles for the task (run/walk) actions demonstrates

the potential for this element of the system to be real world useful.

The most obvious explanation for the low acceptance of Learner suggestions would be that

the Learner was simply suggesting a significant number of inappropriate actions. Rate of action

suggestion has already been discussed as something the system failed to properly achieve, such

that the sheer number of action suggestions (appropriate or not) was likely one of the key

reasons for this high rejection rate. Further, as discussed in the following section, the resultant

autonomous behaviour (and its evaluation) actually suggests that the Learner suggested actions

were not inappropriate with regards to content, but were indeed potentially too frequent and/or

therefore repetitive.

Another factor that may contribute to a lack of workload reduction is simply that the instructor

did not allow the workload to reduce, i.e. he (subconsciously or otherwise) actively wished to

remain in control of/guiding the session and therefore possibly had a tendency to take an active

role in rejecting suggestions in favour of slightly different actions or a slightly different timing of

the same action. This would be in line with similar results documented by Senft et al. (2019) who

also found that the expert in the loop was still taking a very active role in managing supervised

robot behaviour and rejecting Learner suggestions towards the end of training, even when

autonomous testing then suggested that Learner generated, autonomous behaviour was fairly

appropriate and similar to the experts’ supervised behaviour. Future work might investigate

this further in part by considering expert instruction, training, supervision and ‘handing over of

responsibility’ to an equivalent human trainee.

4.4.3 Autonomous Robot Behaviour (RQ2)

These findings are presented to ascertain whether, when running autonomously, the robot

successfully behaved appropriately in supporting participants through the programme.

4.4.3.1 Comparison to Supervised Behaviour

The nature of the C25K interaction scenario makes it difficult to compare action distributions

across conditions as a measure of performance, as exercise sessions are incredibly dynamic with

regards to e.g. participant state (energy level that day, mood, fatigue etc.) and task requirements,

e.g. lots of short run/walks versus longer runs. As such, two ‘good’ sessions, where the robot

acts appropriately, may have very different action distributions. However, comparing the overall
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Figure 4.19: Summary of the fitness instructor’s workload, concerning the generation of un-
prompted actions and responding to Learner suggestions, and how that evolved over the super-
vised sessions of Phase 2. Raw action numbers plotted first to highlight the actual number of
actions occurring during sessions. Normalised data also plotted for clarity, as well as a scatter
with line of best fit to show any overall trend. Whilst an increase in accepted Learner suggestions
can be seen (as would be expected if the Learner was getting ‘better’ based on the increasing
amount of training data collected) there is not an overall decrease in workload (active or su-
pervisory) as the instructor still generated a lot of unprompted actions and refused a lot of the
Learner’s suggestions.
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Participant Supervised Autonomous
LB 21, 22 23, 24
FB 20, 21 22, 23
DB 16, 17 19, 20
JF 21, 22 23, 24
MR 17, 18 19, 20
DP 21, 24 25, 26
JW 21, 22 23, 24
GB 21, 23 24, 25
PT 17, 18 19, 20

Table 4.10: Subset of sessions used to compare supervised and autonomous robot behaviour.
Results comparing the performance of the autonomous robot to that of fitness instructor su-
pervised behaviour are based on actions executed in the above 36 sessions: 2 supervised and 2
autonomous sessions per participant. Aside from DP and GB (for whom technical difficulties
required a shift in experimental schedule) these sessions represent the last two supervised and
first two autonomous sessions each participant undertook, to maximise similarity in e.g. session
length and session difficulty.

number of each action/style across the most comparable sessions (i.e. consecutive programme

sessions of similar difficulty) provides some insight into how well the system learned to replicate

instructor behaviour with regards to utilisation of the action space. As such these comparisons

were made on actions from a subset of two supervised and two autonomous sessions per partici-

pant (listed in Table 4.10). Participant evaluations of these sessions, arguably a better measure

of how good or appropriate the robot’s behaviour was, are presented in Section 4.4.3.3.

Figures 4.20 and 4.21 shows the number of each action and action style used in the selected

autonomous and supervised sessions. Some clear similarities can be seen across the distributions:

the positive style and praise action are those used most often and there is very similar use of

the time, challenge, humour and checkpre actions, i.e. with the humour and checkpre actions

being used much less than the praise, time and challenge actions. However there are also some

differences, for example the autonomous system used the sympathise action more frequently, and

never used the speedup or speeddown actions. This may be down to the nature of the instance-

based learning employed, combined with the relatively infrequent use of these actions throughout

all training sessions (as per Figure 4.11). However, as mentioned previously it could just be that

use of these actions was not appropriate in those sessions considered. With this in mind, these

results offer fairly strong support for H2A: The autonomous robot will utilise the entirety of the

co-designed action space in a similar way to the fitness instructor.

4.4.3.2 Personalisation

Following on from the previous results is the question of whether the autonomous system was

able to produce personalised behaviour across participants, similar to that demonstrated in
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Figure 4.20: Comparison of style of actions executed in the supervised and autonomous sessions
listed in Table 4.10 presented firstly as total counts across all those 36 most comparable sessions
and secondly as a boxplot showing counts and variation across per session.
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Figure 4.21: Comparison of actions executed in the supervised and autonomous sessions listed in
Table 4.10 presented firstly as total counts across all those 36 sessions and secondly as a boxplot
showing counts and variation across per session.
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the fitness instructor’s supervised use of the system. The results presented here are organised

exactly as per that subsection, considering the style and action types executed across participant

sessions and how those contributed to overall use of each action/style type. Again to maximise

comparability, and allow comparison of raw as well as non-normalised data, actions from the

two autonomous sessions per participant listed in Table 4.10 are used for making these between

participant comparisons.

Figures 4.22 and 4.23 show how style and action-type of actions executed varied across

individual participants’ sessions. As an alternative way of demonstrating this variation, Figure

4.24 shows how full actions (combining action-type and style) executed per participant contributed

to the cumulative sum of actions across all sessions. If the action/styles executed were very

similar across all participants, then each participant should contribute approximately 1/9th of

the cumulative sum of each action/style combination. Clearly this is not the case, e.g. with some

actions not being used across all participants. Another element of personalisation that these

figures fail to show is when which types of actions were executed. As described previously, JF and

FB were two participants highlighted as requiring different approaches by the fitness instructor.

Figure 4.25 shows which actions were used and when in the same C25K session (session 23)

for each of them. Differences can be seen in both the overall use of certain action types as well

as when they were executed. Finally, in notes taken during an autonomous testing session, the

fitness instructor made reference to being impressed by the system’s generation of personalised

behaviour (DP 25: ‘Client specific profile is impressive.’ in Table 4.11). Together, these results

provide strong support for H2B: the autonomous robot will demonstrate personalised behaviour

across participants.

4.4.3.3 Participant Experience/Evaluation

Figure 4.26 shows participant responses to the immediate post-session question on ‘How would

you rate the robot as an exercise instructor based on today’s session?’ firstly for the selected

sessions compared in the previous subsection (as per Table 4.10) and then normalised across all

autonomous and supervised sessions. Very little difference can be seen in evaluations of the robot

when supervised versus running autonomously. The autonomous system received 1 ‘not great’

rating out of a total of 32 sessions whereas the supervised system received 3 in 151 sessions.

As discussed under Section 4.3.6, Phase 3 of the testing schedule was designed in part to

test whether participants would notice the (undeclared) switch from supervised to autonomous

control of the robot. Qualitative feedback collected in the immediate post-session measures of the

first autonomous session suggests 2/9 participants noticed a negative change straight away:

[User FB - Session 22]: I don’t feel Pepper added much to this run. She repeated a lot of phrases

and not quite at the right points.

[User MR - Session 19]: Usually I like Pepper’s comments at the end of an intense running phase

because they are usually quite short. Today Pepper said long sentences during the last 2-3 minutes
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Figure 4.22: The style of executed actions across participants in the two, first (most comparable)
autonomous sessions as per Table 4.10. Plotted firstly as raw data (showing the overall number of
actions varied across participants) and then normalised, demonstrating the system autonomously
varied the styling of actions across participants. If robot behaviour was not personalised, then we
would expect the proportion of action styles to be approximately equal across participants.

of the run and that made it really hard to concentrate.

Notably, it was after this particular session that MR gave the autonomous robot the only

‘not great’ rating it received during the study (see Figure 4.26). Across all further autonomous

sessions only 1 other participant (LB) explicitly referenced any change in the robot’s behaviour

(negative or otherwise):

[User LB - Session 24]: Felt a little random today- Pepper telling me to run when I was walking

etc. and asking how I was doing twice in a row.

The remaining 6/9 participants gave no indication that they noticed any change in be-

haviour/rated the robot any differently in the autonomous sessions. Overall, these results provide

partial support for H2C: Participants will not notice the switch from supervised to autonomous con-

trol of the robot, and will not evaluate the (autonomously running) robot significantly differently

on post-session measures. The fact that only two participants specifically identified a negative
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Figure 4.23: The action-type of executed actions across participants in the two, first (most
comparable) autonomous sessions as per Table 4.10. Plotted firstly as raw data (showing the
overall number of actions varied across participants) and then normalised, demonstrating the
system autonomously varied utilisation of the action-types across participants. If robot behaviour
was not personalised, then we would expect the proportion of action types to be approximately
equal across participants

change gives confidence that the autonomous system was indeed somewhat indistinguishable

from the supervised system. However, as this wasn’t universal it raises questions as to why any

differences were particularly obvious to those two participants in particular. For example, it

could be that these two participants were simply more attentive to the robot’s behaviour than

other participants and so were always more likely to notice any changes (although this seems

unlikely). More likely, it could be that the system failed to properly learn the right, personalised

action policy for those participants in particular. This, in turn, would most likely be caused by

the simple KNN algorithm employed failing to recreate the same variety of actions utilised by

the instructor. This may further imply that the instructor also used less variety of actions and/or

was less consistent in his use of actions for these participants, such that the respective training

data were somewhat skewed.
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Figure 4.24: The total of each action (and associated style) executed across the two, first (most
comparable) autonomous sessions participants completed, broken down by participant. The
normalised version particularly shows the variation across participants; if the action distribution
was the same across participants then we would expect each participant to contribute 1/9 of each
bar.
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Figure 4.25: The cumulative sum of each action type throughout JF and FB’s (autonomous)
session 17; showing when each action type was used through the session to demonstrate the
system’s ability to personalise this element of action execution. Building on the difference in
total instances of each action type (shown in Figure 4.23) it can be seen that there are also
clear differences in when those actions were executed within the session. For example, lots of
performance actions were used at the start of FB’s session, whereas social and reward actions
were used at the start of JF’s session with performance not being used until much later on in the
session.
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Figure 4.26: Participants’ post-session ratings of the robot as a fitness instructor, first presented
for the 36 sessions considered under Section 4.4.3.1 and then normalised across all (151) super-
vised and (32) autonomous sessions constructed during the study..
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4.4.3.4 Fitness Instructor Evaluation

As noted in Section 4.3.7, it became difficult for the fitness instructor to fill in post-session

measures whilst facilitating back-to-back experimental sessions. As such, his evaluation of

the system is taken from notes he made in-session and an overall post-study interview. Table

4.11 gives the in-session notes, directly as written by the instructor, from the 18 autonomous

sessions listed in Table 4.10. Coarsely coding these observations as rating the robot’s behaviour as

positive, negative or mixed, results in the distribution shown in Figure 4.27. Whilst the majority

of autonomous sessions were rated positively, there were some clear instances of autonomous

behaviour that the instructor felt were not appropriate. Generally these revolved around issues

with repetition of actions/speech, and/or the timing of certain actions not being quite right.

In a final post-session interview, the instructor was asked to compare the performance of

the Heuristic and autonomous IML behaviours. This comparison is discussed in Chapter 5, but

his description of the IML generated behaviour gives further insight into his evaluation of the

autonomous IML behaviour:

“With the learned A.I., it made some intelligent decisions. It like, oh, sometimes it was slow,

but it made those decisions. And there are some some cases where I thought, you know, the client

was really pushing themselves, they’re finding it tough. And the robot asked how they were, which

was the perfect time to answer that intelligent question. And it responded to the client’s response

and in the appropriate manner. It was really good... and I could tell that that level of teaching or

reinforcement really, yeah really did stick, really paid off.”

In summary, considering what actions the robot executed when and for who, the instructor’s

comments suggest the what and for who was relatively accurate, but that there were sometimes

issues with the when. This provides partial support for H2D: the fitness instructor will evaluate

the autonomous behaviour as being appropriate and effective.

4.4.4 Participant Experience of Couch to 5km with C25K Robot (RQ3)

Whilst this study was relatively small in the number of participants recruited, reflections on their

experience still provides some insight into if/how the robot might be successful in supporting

people through a long term exercise programme. Firstly, even given the typically hypothesised

Hawthorne effect of participants wishing to please the researcher (Jones 1992) the fact that only

1/10 recruited participants dropped out during the study is a positive reflection on the programme

and experimental setup. Low adherence to long term exercise regimes like the couch to 5km is a

well documented issue (e.g. Wankel (1985), Visser et al. (2014)) and, as a reminder, participants

were not reimbursed for their participation in the study in any way.

Table 4.12 presents key findings from open-answer qualitative data concerning participants’

experience as captured in the final, post-study questionnaire. Their overall assessment of working

with the robot/the robot as a motivational tool (‘Overall Assessment’ in Table 4.12) was assessed

based on their answers to these final open-answer questions. 5/9 participants specifically referred
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Session Fitness Instructor Notes
LB 23 Great starting selection of actions, choice in timings and variation. Could be more serious about

challenging themselves, especially when entering the end of a program. Some sentences said after
each other randomly can have contradictory meanings thus probably confusing for the client.
Well timed use of humour. Good evolution of speech over the course of the run, becoming more
challenging towards the end. What I’ve wanted to see Pepper, very happy.

LB 24 Actions: great choice (+ specific dialogue), timing and variation. Good starting combination of
sympathetic challenge and maintenance (for technique), early instructions to ’zone out’. Amazing
near-end-of-run speech. Much much better cooldown speech. Very happy (another) great session.

FB 22 Good variation and timing. Sympathetic time too early? Poor choice of cool down speech.
FB 23 Different start (humour focused) unique but still with good action choice and variation. Personali-

sation. Good smart use of speech/actions. Slightly repetitive ’maintenance’ - justified? yes to be
fair. Not constant, evolved throughout the run, desired learner behaviour. 2x check pre used one
after the other (I’m being pedantic now). Quiet cool down = desirable. Great session.

DB 19 Happy. Praise heavy, lacking situational awareness? Sometimes with poor timing of speech
revealing the robotic nature of Pepper. Not quite relevant/logical/sincere. Good versus great
trainer. A lot of positive time - not enough dialogue. Better end of run speech/actions. Better
cooldown dialogue/actions. Not perfect.

DB 20 Generally good action selection. Can’t tell whether actions/speech is chosen at repeated intervals
of time... it must be good if I can’t tell? Too slow to realise the needs of the situation and react
accordingly i.e. slows down for a breather/break and Pepper rewards praise/positive. Not sure
there’s anything Pepper could say to establish connection at this stage. Better cooldown behaviour,
evolved speech/action choice i.e. becoming more challenging towards the end.

JF 23 First action too fast. A lot of sympathy and a lot of praise. Check pre with 100s left...hmm...
expected better finish.

JF 24 Start on-point. Great choice and timing of actions. Slightly praise heavy...justified? Check pre
better, not challenging.

MR 19 Very fast first action, some variation but praise heavy although that’s definitely justified. Good
positive variation, i.e. not just using or consistently using the same action especially positive time.
Good timing of check pre (and in cool down). Good action choice, timing and variation. Impressive.
Interesting use and timing of ’dance’ [animation] action near the end of the run, don’t think I’ve
ever done that?

MR 20 Again good timing and selection of actions. Deserves praise - not too much use challenging
someone already giving their everything. Therefore less need for Pepper.

DP 25 First action very fast. Good suggestions and timing. Client specific profile is impressive. Sympa-
thetic time a little early but subjective... great dialogue.

DP 26 Great selection of starting actions. DP + Pepper: love the communication, call and response
relationship.

JW 23 Very good selection of dialogue. Very happy. Choice, variation, timing = on-point. Too much check
pre (x2).

JW 24 Random variation in actions? Sympathetic time far too soon. Better action choice at run end.
GB 24 Good timing and variation in actions but bad first choice of sympathetic time. Remains praise

heavy, loses its sincerity? Learner keeping good variation. Amazing performance by Pepper. Good
dialogue/speech choice at the end and a post run check pre. Very happy.

GB 25 Bad first choice ’not long now’ with 30 minutes to go. Praise heavy but relevant. Still keeping
good action variation. A lot of chat during the cooldown.

PT 19 So good at the start! Love the choice and variation... until it constantly repeats praise. Ok far too
much praise. Just too much repetition. Poor finish...

PT 20 Very good start! On-point timing and choice. So impressed. Finish could be more engaging.

Table 4.11: Fitness instructor notes taken during the 18 autonomous sessions specified in Table
4.10. Coarsely coded as either positive or negative for Figure 4.27.
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Figure 4.27: Result of fitness instructor evaluations of the autonomous sessions in Table 4.11
when coarsely coded as overall positive, negative or mixed.

to the robot as a positive motivator, whereas 3/9 questioned to some extent what difference the

robot really made and 1/9 expressed an active dislike for working with the robot.

In response to the question concerning their thoughts on robot-supported exercise, 4/9 partici-

pants suggested the idea has ‘potential’ (but probably requires some additional development).

3/9 participants found it to be positive and useful already, based on their experiences during the

study, with one participant specifically highlighting he felt confident he ‘would not have completed

the course if it was a mobile phone app’. One participant suggested they where unsure how useful

it would be and anothr was against the idea of robot-supported exercise completely.

In a measure designed to compare the Heuristic and IML systems, participants were asked

whether they would work out with one of the study robots again (if so, which) or whether they

would prefer not to work out with a robot at all. Only 1/9 participants indicated they would prefer

not to work out with a robot in future, as seen in Figure 4.28. Together with participant ratings

of the sessions, and the above described qualitative data, these results provide partial support for

H3A: overall participant experience of the programme will be positive, with specific reference to

the robot as a motivational aid. Whilst all participants ultimately expressed completion of the

programme as being a positive experience, this was not always specifically linked with the robot.

This variation in how useful the robot was/could be is likely down to personal preferences with

regards to (i) the style of instruction/encouragement most suited to each participant and how

well or not the C25K robot embodied that and (ii) to what extent the participant really benefited

from any external, social motivational presence at all (i.e. how intrinsically motivated they were)

and (iii) to what extent the participant felt comfortable with robots more generally.
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Figure 4.28: Participant responses to a post-study questionnaire item on whether they would
work with one of the robots tested in the study again in the future.

Specifically addressing H3B: the (background) presence of the fitness instructor will be a factor

in participants’acceptance/positive experience of working with the robot, 5/9 participants actively

referred to the importance of the fitness instructor being present during the study. 4/5 of those

participants referred to this in the context of his presence easing any safety concerns and/or

giving them more confidence to work out as instructed by the robot. 3/5 referred to his pres-

ence/interactions with him as being (another) motivator in wanting to attend sessions/complete

the programme. As such, there is partial support for the hypothesis. This somewhat triadic nature

of interactions between the robot, instructor and participants is considered more in Chapter

5; with further detail on how participants described the relative role of the robot versus the

instructor and the complimentary way in which they seemed to ‘work together’.

4.5 Discussion

4.5.1 Successfully Demonstrating the Potential for SARs In-the-Wild

The experimental study designed to allow for training and evaluation of the IML system also

represented a significant HRI user study in its own right. Whilst the number of participants

recruited was relatively small, the study was significant in its longitudinal nature and the focus

on delivery of a ‘real’ functional exercise programme in an ethnographically valid environment.

In short, the study represented real world deployment of a SAR, ultimately allowed to run

autonomously. Participant evaluations of the system, as well as more general reflections on

taking part in the study essentially demonstrate that SARs may indeed be able to have a positive
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Topic Code Data

Overall Assesment

Positive
(5/9)

[DP] I am confident I would not have completed the course if
it was a moble phone app.
[JF] I’ve done C25K programmes in the past but this motivated
me the most to keep it up and try to do better each time.
[JW] Having Pepper there... I had to push myself harder and
faster than running on my own.
[LB] Pepper was a good instructor and positively motivated
my runs

Neutral
(3/9)

[GB] I still don’t know how much effect having the physical
obot there affects my motivation to run. It possibly does.
[MR] I am not sure if Pepper had much influence on my
performance though.
[FB] I think I would have felt the same level of motivation etc.
with a voice in my ear if I wore headphones whilst running.

Negative
(1/9)

[DB] I find the robot annoying over all and looked forward to
just seeing and speaking with Don.

Robot Supported
Exercise

Has Potential
(4/9)

[MR] I feel like successful robot-supported exercise is possible.
However, proper interaction between robot and human needs to
be possible for that.
[JF] I think it has a lot of potential for motivation if you have a
robot that is intelligent and gets to know you.
[JW] I do see a future in robot-supported exercise like this but I
think the robot would need to learn more about the individual it
was training.
[GB] I think robots certainly could have a place in supporting
exercise in the future.

Positive /
Effective (3/9)

[LB] I found this to be positive and could see this working well
[DP] My feelings are entirely positive. I am confident I would
not have completed the course if it was a mobile phone app.
[PT] The robot in my opinion did a great job in helping me
achieve the couch to 5k programme. It was a great gym-buddy
companion that maked me wanting to go to the session and try
my best

Unsure
(1/9)

[FB] I’m not sure. It worked for a programme like this in terms
of having additional support/motivation, however I think I
would have felt the same level of motivation etc. with a voice
in my ear.

Negative
(1/9)

[DB] Robot interaction isnt really for me, this study has made
me realise that I need a human trainer.

Importance of
Fitness Instructor

(5/9)

Safety, /
Confidence (4/5)

[LB] The role of Don assisted this in that having him there meant
I could follow the robot’s instructions safe in the knowledge that
there was some support there should anything go wrong!
[DP] Don’s stretching routines were essential in my committment
as a major fear was dropping out because of a pulled muscle.
[JW] I think the human element (i.e. Don)... was vital after sessions
when aches and pains caused concern.
[PT] I think I felt more secure having an experienced person... I
could turn to him if I was feeling unwell during the run etc.

Motivational
(3/5)

[JF] Don’s presence overall was also really motivating as he was
really encouraging after each run and with the overall programme.
[JW] Don and Katie were also vital in providing encouragement
and incentive after each session.
[PT] It helped that Don was really encouraging at the end of each
session.

Table 4.12: Qualitative data collected in the final post-study questionnaire, coded using the
Framework method also employed in Chapter 2 according to the hypotheses of RQ3 and emergent
themes.
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impact on engagement with long-term and/or monotonous exercise, but that this is only likely to

be true for a subset of the population. Specifically, some people may not be affected by its presence,

and some may actively be discouraged by it. Overall however, given the long-term nature of the

study (resulting in high exposure to the robot, presumably going beyond novelty effects, as well

as repetition of robot speech resulting from the limited dialogue programmed into the system),

the results give real credibility to the concept of using SARs in this context.

4.5.2 IML for Generating Autonomous SAR Behaviour

It was stated in the introduction that a successful SAR should be able to identify what actions

to do when and for who, and posited that IML as employed by the SPARC paradigm would be

capable of achieving this. It was unknown before running the experimental study whether (i)

the approach could yield successful results at all and more specifically (ii) whether the amount

of training data collected during the supervised phases of the study (fundamentally limited by

the fixed length of the couch to 5km programme and resulting experimental schedule) would be

adequate.

The results presented in Section 4.4 demonstrate that the autonomous robot resulting from

this application of SPARC successfully learned the what and for who but had mixed performance

when it came to the when. The robot did appear to intelligently use certain actions at the right

time with respect to, e.g. where participants were in the session and their current effort levels,

however it fundamentally failed to learn a sensible action rate. Specifically, the system suggested

actions for almost every input state, such that a limit for the rate of action suggestion had to be

hard-coded before final testing. This is discussed further in the following subsection.

Overall however, the results point towards the approach generally being a success. The

autonomous robot utilised almost all of the action space in a similar way to the fitness instructor.

The speed up and speed down actions not executed by the autonomous system during testing

were relatively infrequently used by the fitness instructor. This is likely because they’re relatively

‘high risk’ actions which have the potential to negatively impact rapport between the client and

the trainer and/or the client’s confidence. In addition, the robot demonstrated personalised be-

haviour across participants. This is a particularly significant result as the previous demonstrated

application of SPARC did not target any personalisation beyond responding to an individual’s dy-

namic, in-session task performance. Finally, the autonomous behaviour of the robot was generally

positively evaluated by participants and the fitness instructor.

4.5.2.1 Sometimes No Action is the Right Action

Given that the autonomous robot did demonstrate the intelligent timing of certain actions, its

only real failure can be summarised as the inability to learn the sometimes it is best to do

nothing. One difficulty in learning a sensible action rate likely comes from the fact that the fitness
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instructor was also very varied in his rate of action execution, demonstrated by the example

session described in Table 4.9. In addition however, it is also likely due to:

(i) the dynamic thresholding approach utilised to apply a minimum confidence requirement to

suggestions not being adequate, given the large amount of static, unchanging data within

the input state space

and/or

(ii) ‘do nothing’ not being formally encoded as an action available to the system

In both cases, these essentially reflect issues with the specific IML implementation and KNN

algorithm utilised in this work, rather than the overall approach. This failure would also appear

to account for the main documented criticism of the autonomous system, specifically that it was a

bit too talkative/repetitive. As such, they are obvious candidates for improvement in future work,

discussed further at the end of this section.

4.5.3 The Practicalities of IML as a Process for SAR Automation

Aside from the ultimate aim of generating appropriate autonomous behaviour, there are a number

of practical considerations (potential benefits but also limitations) associated with this approach

and demonstrated by the experimental study presented in this chapter. Firstly, the results pre-

sented in Section 4.4 demonstrate that the IML system architecture employed was adequate for

enabling the fitness instructor to ensure appropriate, effective robot behaviour during supervised

training sessions. In addition, participant evaluation suggests that (for those participants who

found the robot to be a motivating presence) the robot was a useful motivational aid throughout

the study, i.e. the robot was effective during the training stage as well as autonomous operation.

Further, the presence of the fitness instructor acted as an additional motivator and/or reassuring

presence regarding confidence in the robot for a number of participants. This latter result may

be an example of inherited credibility as discussed in Chapter 3. In any case, it is another piece

of evidence in favour of the robot-supported, but human-led approach to using SARs in the real

world taken throughout this work.

The results also show, however, that the IML approach failed to yield any reduction in

instructor workload during training sessions. Right up until the end of the fixed training period,

the fitness instructor was still actively providing a lot of feedback to the system. The majority

of this feedback was the refusal of suggested actions, but also included a significant amount of

unprompted actions. Arguably, this is somewhat at odds with the overall result then that, when

allowed to run autonomously with no such supervisory control input, the behaviour was actually

appropriate and effective (and evaluated as such by the instructor himself). This observation

results in two key considerations for the practical application of this approach.

Firstly, it raises doubt on the possibility that the SPARC approach might usefully reduce

the workload of the person teaching it and/or supervising it when running ‘autonomously’
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if that teacher is still to continue supervision for e.g. safety reasons. In this work, during

supervised sessions, the fitness instructor’s attention was generally completely taken up by

monitoring participants’ interaction with the robot and monitoring of the teaching interface.

Further, this was required not just for the generation of unprompted actions but also for the

arguably ‘lower’ workload of supervising the system and responding to inappropriate actions.

For a fitness coach, the appropriateness of the action depends on a complex multitude of factors

regarding instantaneous but also preceding performance and interactions, thus assessing that

appropriateness requires significant involvement and attention from the instructor. However,

this may not be true for other applications in which (i) inappropriate or unsafe actions might be

easier to spot by someone supervising the system and (ii) the supervision interface is designed

around alternative modalities such that visual attention of the supervisor is not required at all

times.

Secondly, it raises doubt on the ability of the expert supervisor to actually assess at what

point the learning system is ‘good enough’ to be allowed to operate autonomously. The previous

demonstration of SPARC also demonstrated this same result of the system yielding no significant

workload reduction yet generating appropriate autonomous behaviour (Senft et al. 2019). In

this work, the amount of training time was fundamentally limited by the experimental schedule.

However it is completely feasible that other applications of this approach would leave it to the

expert supervisor to decide at what point the system requires no further training data. Results

from two studies can not be used to suggest an overall trend, but it is interesting to consider the

notion that whilst supervisors can control/adjust the robot’s action policy then they will. Future

work might investigate this further, and if it is the case, consider how it might be accounted for

within system design and implementation. To really comment on the effectiveness of the learning

process, future work might also consider a comparison to the equivalent expert led teaching of a

new (naive) human instructor.

4.6 Conclusion

This chapter presents the design, implementation and evaluation of SAR, automated via interac-

tive machine learning carried out in-the-wild. The system architecture employed is technically

novel, building on previous work by (i) including static participant personality/motivation data in

the system input space and (ii) utilising a dual-learner approach that allowed for generation of a

robot style or ‘mood’. The style learner was then used for informing lower level robot behaviours as

well as styling actions, with both of these extensions being critical in the learning of personalised

action policies.

The in-the-wild study utilised for training and evaluation of the system represents a signifi-

cant HRI user study, both based on its longitudinal nature with many repeated participant-robot

interactions but also in its ethnographic validity and functional delivery of a real world useful
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programme. Key findings from the work can be summarised as follows:

• The success of the overall user study setup with regards the role of the robot and the

instructor and his use of the IML system demonstrates the value of the co-design process

employed early on in the work.

• The importance of personalisation in the context of social assistance, already highlighted by

the studies in Chapters 2 and 3, was demonstrated in practice, and successfully achieved

by the autonomous system.

• Further regarding personalisation, and in-line with assumptions/limitations identified at

the beginning of this chapter, it is clear that a SAR may not be acceptable or appropriate

for all potential users, simply down to their personal preferences regarding robots. In

addition, some users may benefit from a SAR that takes an alternative social role e.g. less

authoritative to the one considered here.

• The presence and role of the fitness instructor proved to have an important impact on overall

participant experience, including their interactions/willingness to work with the robot. In

contrast with traditional HRI studies that look to minimise any additional human/social

presence, it is argued that this is both crucial but also methodologically valid for considering

robots that will be deployed in the real world.

Overall, the results of this user study give strength to the idea that SARs might positively

influence people to stay engaged with a long-term, monotonous exercise programme. In addition,

this work demonstrates that IML offers a feasible method for generating complex, personalised,

autonomous SAR behaviour using input from a (non-robotocist) domain expert. However, future

works should carefully consider how the concept of doing nothing might be encoded and/or learned

in an IML system. Further observations on IML as a design process, and its suitability for pursuit

of a mutual shaping approach to SAR design and evaluation, are presented in Chapter 5.
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5
MUTUAL SHAPING IN DESIGN AND DEPLOYMENT OF SOCIALLY

ASSISTIVE ROBOTS

As discussed in Chapter 1, an aim of this work was to undertake a mutual shaping

approach to the research and development of socially assistive robots, positing that such

an approach is necessary for the resultant robots to be effective when deployed in the

real world. This chapter identifies (i) how the (generalisable) methodologies employed in this

work support mutual shaping, (ii) why such methodologies are worthwhile and (iii) examples of

mutual shaping ‘in action’ taken from the work presented across Chapters 2 to 4. Part of the

work presented in this chapter (specifically limited to the focus group methodology and study

with therapists) is described in the following publication:

Winkle, Katie, et al. "Mutual shaping in the design of socially assistive robots: A case study on

social robots for therapy." International Journal of Social Robotics (2019): 1-20.

5.1 Introduction

Chapter 1 introduced the concept of mutual shaping, which can be summarised as the two way

interaction between a robot (or more specifically, use of that robot) and the broader social context

or environment in to which that robot is deployed. Further, it was identified that this work would

take a mutual shaping approach throughout, specifically by employing participatory methods

where possible and considering mutual shaping effects regarding deployment of socially assisitve

robots (SARs) in the real world (Sabanovic 2010).

The focus group methodology utilised in Chapter 2 was designed specifically to support this

approach. The novel methodology employed resulted in a number of additional observations,

specifically concerning (i) the potential for mutual shaping effects on deployment and (ii) evidence
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of mutual shaping achieved during/as a result of the study itself. These results are presented and

discussed in Section 5.2. Similarly, one reason for utilising the interactive machine learning (IML)

methodology presented in Chapter 4 was to go one step further than traditional participatory/co-

design and allow direct user/stakeholder participation in the automation of the robot. As briefly

introduced in Chapter 4, a heuristic, rule-based robot was also co-designed and tested alongside

the IML system during that study, in order to investigate the differences in robot behaviour

(and participant experience) resulting from the two approaches. This is discussed in detail under

Section 5.3.

This chapter contributes two methodologies for how to take a mutual shaping approach

during SAR design and development, along with results that demonstrate why that’s a good thing

to do. In addition, observations of mutual shaping collected during this work are also presented

as evidence of the complex interactions between robots (and robotics research) and the context

of use. From the study with therapists of Chapter 2 this represents the extended focus group

methodology (how), the insightful observations it yielded (why) and the actual impact it had

on participants’ acceptance of robotic technologies (example of mutual shaping). For the C25K

robot coach system presented in Chapter 4, this represents interactive machine learning as a

participatory design process (how), the results demonstrating that the resulting system was

better than an expert-informed heuristic based system (why) and observations regarding real

world deployment and use of this system over a longitudinal study (examples of mutual shaping).

5.1.1 Methods for Mutual Shaping

There are a number of methodologies that might be employed in a mutual shaping approach to

SAR design and research, and it is useful to define them in order to properly situate this work

amongst existing literature. These include:

1. Ethnographic/‘In-the-Wild’ Studies typically focus on understanding situated use and/or

emergent behaviour(s) on deployment of a robot into the real world. Concerning robot

design, such studies are inherently limited to the testing of prototypes. However, they

might be used to inform initial design requirements through observation of the current use

case environment and user behaviour.

2. User-Centered Design aims to understand and incorporate user perspective and needs into

robot design. Typically researchers set the research agenda based on prior assumptions

regarding the context of use and proposed SAR application.

3. Participatory Design encourages participants (users, stakeholders etc.) to actively join in

decision making processes which shape robot design and/or the direction of research. This

typically involves participants having equal authority as the researchers and designers,

with both engaging in a two-way exchange of knowledge and ideas.
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These terms define relatively high level methodologies or research philosophies. Specific

data gathering methods which can be employed in pursuit of the above include focus groups

and workshops (e.g. Jenkins & Draper (2015), Louie et al. (2014), Lee et al. (2017)), interviews

(Lee et al. 2017), surveys (Green et al. 2000) and observations (e.g. Sabelli et al. (2011), Forlizzi

et al. (2004), Chang & Šabanović (2015)). Lee et al. (2017) give a good overview of the above

practices as currently employed in robot design, with a focus on user participation in the design

process. On the distinction between user-centered design and participatory design, they note

that user-centered design typically tries to understand user needs for informing robot design.

Participatory design instead attempts to empower participants such that they can actively

collaborate in the design process. The authors also describe the concept of mutual learning, a

key mechanism for achieving such collaboration. Via mutual learning, users learn about design

and technology from the researchers as well as providing useful information and perspective to

the researchers. This empowers the users to be able to really take part in the design process,

giving them the knowledge required to conceptualise and hence critically evaluate the concepts

proposed. Following these definitions, the focus group methodology presented in Section 5.2

utilises elements of both user-centered and participatory design, with a focus on mutual learning.

Section 5.3 then discusses how expert-in-the-loop, interactive machine learning can be considered

a participatory design process, and also utilises significant ‘in-the-wild’ robot deployment.

5.1.2 Related Work

Most studies concerning the development of SARs for exercise engagement have been concerned

with feasibility and quantifiable impact (e.g. Gockley & Mataric (2006), Tapus & Mataric (2008))

rather than exploring use cases, generating design recommendations or considering mutual

shaping effects. Studies designed to measure user acceptance have also typically followed a

technologically deterministic approach, with a complete system being presented for evaluation.

For example, in the a closely related work considering SARs specifically for rehabilitative exercise

engagement, Wilk & Johnson (2014) utilised a robot demonstration in investigating the potential

for a combined telepresence/SAR system in facilitating and encouraging engagement with stroke

therapy. Residents and caregivers from a daycare centre were given a demonstration of the robot’s

capabilities. Then, they were asked to complete a survey measuring perception and acceptability

of the robot system. The authors note that caregivers also discussed additional capabilities

the robot could have, but no detail is given as to the format or formality of these discussions.

Further, there wasn’t any consideration of, nor any opportunity to explore, mutual shaping

effects that might arise through deployment of the system. Similarly, whilst caregivers identified

potential robot applications, how the robot would be incorporated into overall care delivery was

not discussed.

Considering SARs more generally, other research considering robots for the care of older

adults has typically employed user-centered design to elicit user views or assess user needs
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for informing design requirements (e.g. Louie et al. (2014), Wu et al. (2012), Beer et al. (2012)).

Whilst these works provide valuable user insight, they do not amount to pursuit of a mutual

shaping approach because they fail either to i) account for the influence of social context on robot

deployment and/ or ii) allow societal influence on robot design or research direction during the

development stage. Other works however have specifically employed a mutual shaping approach,

either through observing users and robots in real social environments via ethnographic studies

(Sabelli et al. 2011, Forlizzi et al. 2004, Chang & Šabanović 2015) or through attempting to

actively involve users in robot design (Lee et al. 2017, Azenkot et al. 2016) or the shaping of

robotics research (Jenkins & Draper 2015).

Specifically using participatory design, Azenkot et al. (2016) generated design specifications

for a SAR that could guide blind people through a building. The authors’ study consisted of

multiple sessions including interviews, a group workshop and individual user-robot sessions.

Initial interviews were used to brief participants about the research and robot capabilities. The

group session was used to develop a conceptual storyboard of robot use, identifying interactions

between the robot guide and the user. Finally, participants were individually invited to work

with a researcher and robot platform to prototype robot behaviour. The researchers also asked

participants to instruct a naive human guide, asking probing questions around their preferences

and instructions as a form of contextual inquiry attempting to elicit tacit knowledge.

Somewhere between user-centered and participatory design is the Jenkins & Draper (2015)

use of focus groups to explore views on care robots. The authors used focus groups to collect views

on ethical issues stemming from the real world deployment of care robots from older people and

their carers. Participants were presented with pre-designed scenarios in order to prompt discus-

sion, which may have limited the scope of discussions but ensured that the context of use was

well established. This meant that the use of such robots was considered very holistically in terms

of real world situations. In addition, participant responses were used to prompt discussion on how

the SAR-integrated care approaches could be adjusted in order to make them more acceptable

and reduce negative consequences on deployment. This work (and the larger research project

from which it stems) fits somewhat with the mutual shaping approach in its attempt to consider

SARs in care holistically and in allowing stakeholders to shape their work through revision of the

pre-designed scenarios between iterations of the focus groups. Similar considerations about how

therapy is currently delivered, and how that may change, were made in the study with therapists

of Chapter 2, and are discussed under Section 5.2.

Particularly relevant to our work is the way in which Lee et al. (2017) used participatory

design methods in the development of SARs for older adults with depression. The authors

present a multi-stage participatory design process including interviews and workshops designed

to facilitate co-design. They note that the use of multiple sessions allowed participants and

researchers to ‘familiarise themselves with each other’s knowledge and build a relationship

of trust’. Initial interviews were used to give researchers an understanding of the context of
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potential use (i.e. by visiting older adults in their home to see housing arrangements) and to

encourage initial development of trust between the participants and the researchers. These

were followed by a number of workshops with the older adults. The first workshop was used

to introduce participants to examples of robot systems and to explore how they might be used.

The second and third workshop focused on generating robot designs, after asking participants to

reflect on some element of their life (challenges faced when lonely and use of space in the home

respectively). The fourth workshop focused more on technical design with participants suggesting

sensors that could be included in a robot and discussing resulting issues around data collection,

sharing and security. Finally, a fifth workshop was used to share the robot designs generated

by the older adults with therapists to get their perspective on such robots being used in the

older adults homes. Elements of this work are reflected in both the focus group methodology and

interactive machine learning process described below. The focus group methodology shares Lee

et al.’s focus on mutual learning and utilises the same approach of introducing/explaining robot

systems and getting participants to reflect generally on their current situation before encouraging

participants to translate that into robot design requirements. However, the aim was to achieve

this in a single focus group session. The interactive machine learning methodology shares the

focus on co-design across multiple design sessions based on a close working relationship between

the researcher and an expert stakeholder.

The above literature demonstrates that whilst there is significant effort to include users in

robot design, this is often achieved using user-centered design methods. Such methods typically

focus on eliciting user perspectives in a one way exchange. Users provide information which

designers and researchers then incorporate into robot design (e.g. Louie et al. (2014), Wu et al.

(2012), Beer et al. (2012)). Wu et al. (2012) note that their focus groups, designed to identify design

preferences for robots for older adults, ‘offered an opportunity for participants to...challenge some

implicit preconceptions of the roboticists’. One clear way the work in this chapter builds on

this is to additionally consider exactly the reverse; how roboticists can challenge participants

preconceptions, attitudes towards and acceptance of SARs through a research study. None

of the aforementioned studies do this, although Lee et al. (2017) do reflect on the potential

participant benefits of participatory design (e.g. empowerment, increased social interaction) and

how this should be considered in its use. Even those studies specifically following a mutual

shaping framework have typically been focused on the use of ethnographic studies to generate

observation data and understand mutual shaping of robot use on deployment (Sabelli et al.

2011, Chang & Šabanović 2015) rather than during the design process, and hence gives little

opportunity for users or other stakeholders to voice their perspectives during SAR design. Works

employing participatory design (e.g. Lee et al. (2017), Azenkot et al. (2016)) are the exception,

and demonstrate the worth of using such approaches.

This literature demonstrates to what extent engagement with stakeholders has been limited

to either (i) informing robot design guidelines to feed into researcher/engineer-led development
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and/or (ii) consideration of ‘finished product’ systems. This chapter novelly describes how interac-

tive machine learning can be employed as participatory design to address this, offering a way for

domain expert(s) to actively contribute to the automation of robot behaviour.

5.2 Extended Focus Groups for Mutual Shaping

As discussed under Section 5.1.2, previous work in HRI have used focus groups to engage

stakeholders in user-centered robot design (e.g. Louie et al. (2014), Wu et al. (2012), Beer

et al. (2012)). However, such focus group studies typically represent a one-way exchange with

researchers simply looking to extract knowledge, information or ideas from the participants. The

methodology described here, and utilised in the study with therapists presented in Chapter 2, is

instead extended toward more participatory design through use of mutual learning.

5.2.1 How: Extended Focus Group Methodology

The key elements required for focus groups that support mutual learning between the par-

ticipants and researcher(s), alongside examples of research questions/prompts from the study

with therapists presented in Chapter 2, are given below. Table 5.1 further identifies how these

elements were reflected in the overall structure and topic guide of the focus groups undertaken

during that study. Firstly, taking part in such focus groups has a significant impact on partici-

pants themselves (likely due to the mutual learning element and focus on their inclusion in the

research). Secondly, it allows for broader issues concerning the proposed robot application to be

raised and considered early in the design stage. Finally, whilst not demonstrated in this work,

such focus groups could also be used to as a tool to re-consider these issues once the robot (or e.g.

a prototype) has been deployed for testing in the real world. Overall, the methodology aims to:

• Establish participants as experts and engage in broad discussion without presenting a

defined research agenda (as per participatory design methods).

• Get participants to reflect on the context of use as it is now; i.e. before introduction of a

robot, in order to ground discussions.

• Take time (in the middle of the session to first allow for item 1) to explain the research

agenda (and motive) in more detail, as well as to share relevant technical expertise and

showcase robot capabilities to improve participant understanding of what’s possible.

• Revisit key topics of discussion after the above in order to get informed (and/or altered)

opinions, targeted around the research question(s) and proposed application(s), as well as

any new ideas (as per user-centered design methods).
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Section Topic Guide Key Features

Discussion Part 1

Conventional therapy delivery
Use of social robots in therapy
Activity on factors affecting
adherence

Expert establishment
Naive unconstrained discussion
ML1: Domain expert-to-researcher

Research Presentation
and/or Demonstration(s)

Study motivations & related
literature
Project aims/objectives
2x Pepper demonstrations

ML2: Researcher-to-domain expert

Discussion Part 2 Use of social robots in therapy Informed, targeted discussion

Table 5.1: Key elements of focus group methodology as applied to the study with therapists. ML =
Mutual Learning.

5.2.1.1 Key Elements for Focus Groups which Support Mutual Learning

The key elements required for the methodology, as referenced in Table 5.1, are explained below. A

related topic guide item/focus group activity from the study with therapists in Chapter 2 is given

with each to demonstrate how they can be implemented.

1. Expert Establishment

A small amount of time at the beginning of discussions should be dedicated to making

participants feel comfortable. Specifically, the researcher should raise a question or topic

of discussion that all participants will feel well-qualified to answer (with minimal hesita-

tion/reluctance to make suggestions). Qualitative research guidelines (Curry 2015) suggest

that expert establishment in focus groups is key to encouraging participation. Participants

then feel confident that they can offer useful, valid contributions and are therefore less

hesitant to take part. Example: What are your main goals when working with service users?

2. Naive, Unconstrained Discussion on Robots for Proposed Application

This part of the discussion allows solicitation of participants initial ideas on the use of

robots for the proposed application, before they can be biased by the researcher’s somewhat

pre-defined research agenda. In order to ground discussions, it might be helpful to provide

a brief description/images of the proposed or example robots, but this shouldn’t include

anything about the proposed use/application. Example: (Participants were first provided

with a collage of images and a definition of the term ’social robot’) What do you think about

using robots to support a therapy program? How do you think that robots might be able to

do that?

3. Mutual Learning 1: Domain Experts -> Researchers

This part of the discussion is focused on allowing the researcher to get an informed insight

in to the realities of the application domain. This can be somewhat targeted to factors that

might most impact/inform robot design and functionality for their proposed application.
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Example: How do you monitor service users’ engagement? What kind of factors do you think

affect service users’ compliance with self-practice exercises?

4. Mutual Learning 2: Researchers -> Domain Experts

This part of the discussion is essentially the opposite of the previous, and is focused on

the researcher sharing their proposed application, as well as their reasoning and rationale

behind that, with the participants. In addition, it can be used to demonstrate and explain

robot capabilities to further inform participants such they they have a better understanding

of what such a robot might be able to do. Example: Researcher-led presentation of back-

ground literature demonstrating positive impact of SARs on exercise engagement, overview of

larger doctoral research aims, objectives and planned activities and 2x robot demonstrations

depicting possible application behaviours.

5. Informed Discussion on, & Revisit of, Robots for Proposed Application

The final part of the discussion allows for a re-visit of the initial topics for more informed

and more targeted discussions (i) regarding the researcher’s proposed application and/or (ii)

based on participants increased understanding/familiarity with robot capabilities. Example:

What do you think of the demos? How would you have done it differently? Now that you

have seen the demonstrations... what would a robot aid look like, how could it help?

5.2.2 Why: Insightful Results Concerning real world Deployment

Chapter 2 demonstrated how results from these mutual shaping focus groups fed in to the devel-

opment of design guidelines for SARs in therapy. However, a number of additional observations

concerning real world deployment were also collected as a result of (i) the initial, un-biased

discussions and (ii) the focus on mutual learning specific to this focus group methodology. These

results are presented here to therefore demonstrate the worth of this approach.

5.2.2.1 SARs in Therapy: Mutual Shaping Issues Identified for Consideration

Across all focus groups participants identified a number of social and societal factors relevant

to conventional therapy delivery. These particularly included factors which influence patient

engagement and how the therapists worked to address that. Such factors are also likely to affect

SARs deployed in therapy, and in some cases participants made this inference themselves. One

key recurrent theme was the influence of (and potential to affect) the patient’s immediate social

circle, who are often a key support to both the patient and the therapist. A second key theme

was the importance of the therapist-patient relationship and communication, both in terms of

how this is crucial to conventional therapy delivery but also how SAR use might facilitate or be

influenced by it. Another key theme was patient demographics and costing; although detailed

financing was generally avoided by the moderator, this raised some pertinent issues around

patient socio-economic status with regard to therapy engagement. Finally, the potential for

164



5.2. EXTENDED FOCUS GROUPS FOR MUTUAL SHAPING

patients to become dependent on the robot was raised across 4 out of the 5 focus groups. These

themes are discussed in more detail below.

Issues Regarding the Patient’s Social Life, Circle & Support

The role of immediate family in encouraging the patient to engage was acknowledged multiple

times:

[P2]: “His wife will always come back to me and say what he has and hasn’t been able to

do...she likes to make sure he’s doing everything he’s meant to do and sometimes he’s sitting there

and he’s like ‘well I tried to do it”’

Some warned however that, particularly if the therapy was initially instigated or particularly

encouraged by a particular family member, too much of this co-operation between the therapist

and family could isolate the patient:

[SL1]: “if the person around them is the one that’s referred them and you’re seen as that you’re

coercing, it’s a bit of a conspiracy then isn’t it and the person’s going to feel a bit left out"

Some participants also noted the strain that therapy can put on personal relationships, and

similarly whilst social support could be key in encouraging engagement, it could also have a

negative impact as well:

[P2]: “he’s a good example of someone I’ve seen and given him exercises to do and challenges to

do when I’m not there...he’s got someone with him there who enables him to do it but he sometimes

gets a little bit irritated because it’s his wife (laughs)...And that’s not uncommon either”

[P5]: “sometimes the patient won’t want to do the exercises with their for example husband

because they know he’s already doing all of the activities that they used to do and they don’t want

to be that additional burden: ‘they’ve already had a busy day I can’t ask them to do my exercises

with me so I just can’t do my exercises’"

Participants were enthusiastic about the use of SARs to somehow address this, considering

how SARs for therapy in the home could reduce carer load and relationship strain, but also raised

potential concerns, e.g. the potential for guilt, that might be associated with that:

[SL3]: “Parents, carers, they are absolutely knackered...we spend our lives telling them not to

sit their children down in front of the telly to look after them so I think there might be, there’s an

issue of this around that as well like ‘ooh I’m handing my child over to a machine to do what I

should be doing’...I think it could help but there could be a guilt loop as well"

Such discussions generally focused on the SAR becoming a ‘third-party’; i.e. something which

could neutrally prompt the patient or alternatively be more convincing than a family member

(especially in the case of young people):

[OT4]: “Just thinking about I suppose the child-parent dynamic...actually the parent sometimes,

you know, children say they’re quite tired after school and parents like ‘oh you don’t need to do it

tonight’ or the opposite they try to get them to do it and they’re like ‘I’m not going to do that’. So

actually with kids I think it could be a useful tool actually...a little bit more independent"
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[SL3]: “But then also a lot of people respond to a professional and not their family...So you

could have the spouse sort of whistles to the robot ‘Go on, give him a shout’"

How We Would, Could or Should Talk to Robots

The concept of whether or not manners should be required or understood and responded to by

a SAR was brought up both in terms of how the user would want to speak, but also about how

that could affect or influence people around the robot:

[SL1]: “I think bits of me like the human aspects but bits of me want it to almost to be a

computer that talks" (agreement from others) “because I’m not sure... I would want to say please,

and then I would hate myself for saying please to a machine"

[OT7]: “I don’t like speaking to Siri because it doesn’t recognise when I say please, it then

confuses it... when I’m talking in the car and my kids are hearing it I don’t want them hearing it

as if it’s an instruction"

Therapist-Patient Relationship & Communication

All participants noted the importance of the therapist-patient relationship, e.g. describing the

importance of rapport and the influence that therapists can have on patients:

[P2]: “as therapists we’ve got the, well, sort of luxury of having time with people, so you do

build up a relationship and mostly there’s quite a lot of trust there and they put quite a lot of trust

in what you say so you can be very influential with it"

A suggested benefit of the system was addressing individual patient preferences with regard to

monitoring and disclosure. For example, patients who didn’t like reporting to the therapist could

instead report to the robot, whereas those who seemed to benefit from therapist reinforcement

could be reminded of that by the robot:

[P5]: “For some patients the idea that it’s not a human that you’re reporting to, and it would be

faceless entity, could be a benefit to them, and them knowing that someone else is going to read it

and observe it could be an issue for them... I would say it does make a difference because some of

the technology that I use where it says about reporting the number of steps, they’re waiting to be

told off, even though you don’t tell them off, or waiting to be praised."

One participant also noted that patients might be more willing to ask questions or ask for

help via the robot based on previous experience with an email based system:

[OT6]: “...what it also does is enable the patients to respond and write back in to their therapist

with questions ‘should I, shouldn’t I, how do I do it’ and in fact we have had a couple of patients

who’ve been very engaged with it and even do so from their hospital bed and that was really

interesting in terms of opening up and at what stage they share information and do those things

and because there wasn’t somebody there in front of them, which wasn’t as off putting then actually

you got very different information."

Robot Dependency
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Four participants independently referenced the risk of patients becoming dependent on the

robot, having less autonomy or feeling less responsibility for managing their condition:

[OT3]: “if she can go and get him a cup of tea then she would be loved." [OT2]: “That would be

great" [OT3]: "but at the same time your patients aren’t getting mobile they’re not getting up and

aren’t getting up and engaging."

[P6]: “it’s really important to keep the responsibility with the person themselves, which probably

is going to be a factor with the robot as well you want to potentially be able to remove the robot

from the situation at some stage”

Cost & Patient Demographics

Given that cost is a typical barrier to adoption of new technologies, it was decided that

issues relating to these aspects would not be discussed in depth. However, some participants

highlighted more specific issues regarding cost. In the first instance, in the groups containing

private practitioners, there were comments suggesting that patients who paid for their therapy

directly were more likely to engage with their programme:

[SL3]: “I find that people do the work more in private practice than they ever did in the NHS”

[OT6]: “But then, the fact that they are paying means that they have a vested interest”

In addition however, when considering factors which affect engagement (in which patient

demographics was highlighted as a factor), some participants identified that those who might

struggle with motivation most are least likely to be able to afford private therapy or related

technologies:

[SR2]: “I was at a sports medicine conference...and [a sports science professor] was talking

about how actually interventions that we use to try and improve people’s health through basically

trying to improve their motivation to exercise...he’s saying we’re trying to solve sort of lower class

problems with middle class, upper class solutions with things like apps and things you know...these

are people who potentially don’t have smart phones and yet all our efforts are being pointed at

things like that technology which can’t be afforded to these people"

Willingness to Work With/Adapt to Using SARs

During the pre-demonstration discussions, all participants indicated they would essentially

be willing to try anything which might have a benefit for patients.

[OT6]: “I think if you work with people, patients then anything that makes a positive difference

preferably (laughs) is worth considering"

One participant offered an interesting reflection concerning what’s best for therapists versus

what’s best for patients, and how those two things might unintentionally be misaligned, based on

a previous experience working with technology in therapy:

[SL2]: “I did a project quite some years ago about using video conferencing for face to face

sessions and what was really interesting was that therapists were dead against it, including me,

and felt that that would erode our one to one thing... and we really weren’t very keen, people really
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weren’t very keen, myself included. The patients loved it, so suddenly certainly for me I had to

make a real leap into ‘ok...I thought I was thinking of my patients’ best interests but what I was

actually thinking was about my satisfaction and the rewards for me’ so I really had to change

that and...so I’m probably coming at this much more positively than I perhaps would have done,

having had that experience."

One participant raised the issue that in the case of patients experiencing pain, the robot would

have to tell them to stop, whereas a therapist would assess the situation and (if appropriate)

reassure them that some pain is to be expected and suggest they should carry on. In response

to this, another participant suggested this could be addressed by having the robot contact the

therapist directly to facilitate this exchange as necessary:

[P5]: “you’ve also got to think about the questions that come along the route... the robot’s just

going to say ‘stop you need to refer back to therapist’, that sets up quite a sort of big message in

the patients’ brain of ‘actually no I shouldn’t be doing this because it hurts’ and we might say ‘oh

its fine as long as its not making too much trouble for you, that’s to be expected’..." [SL3]: “But

then you could have the robot doing that, so it could say ‘ok sort of keep going, keep going for

the moment, maybe not quite so strongly, let’s message through to the therapist now’...and if the

therapist gets a text that says this is what’s going on and she can give you a call... it could be

worked in"

Generally, participants who were less accepting or enthusiastic about the idea of using SARs

were still able to identify ways in which they could be helpful; however these were more focused

on fitting into current (conventional) therapy delivery. For example one participant expressed

multiple doubts about robot technologies being suitable for occupational therapy (e.g. in their

ability to ‘read’ the patient or be empathetic); however they were still able to identify how a robot

might help to make better use of their own time with the patient:

[OT1]: “I think you know the robot could help with something so if you say to the patient for

next time prepare a list so that we can think about the groceries you need to do to be able to cook

this meal or whatever it is I guess you know a robot or whatever could say have you prepared the

list have you done this for tomorrow... so that sort of prompts that engagement into the task."

In contrast, those that were more enthusiastic were able to come up with completely new

applications and potential uses which the research team had not considered:

[SL1]: “it’s prompted me thinking of using some aspects of it for training other carers... a lot

of the work I’m doing at the moment is teaching people in care homes working with people with

dementia how to communicate with them... if you could show them how that works with a robot so

‘this is what the robot is doing, isn’t that more endearing when it does that, what would happen if

you do that?’"
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Figure 5.1: Example shift in comments made by one participant in the pre and post demonstration
discussions.

5.2.3 Mutual Shaping: Impact on Participant Acceptance

As previously described, this focus group methodology is designed to support mutual shaping in

three ways, as part of an overall mutual shaping approach to the design and deployment of robot

systems. This includes mutual shaping that actually occurs during the focus groups, specifically

the potential to have an impact on participants acceptance of robots. This was evidenced, both

qualitatively and quantitatively, in the study with therapists.

Qualitatively this was evidenced by e.g. increasing positive comments and contribution to

discussion. An example of this shift for one participant, who seemed to move from being very

skeptical to more optimistic during the session, is given in Figure 5.1. In-group discussion

analysis identified that a concern or issue raised by one participant was sometimes responded to

or addressed by another without moderator intervention. This was observed at least once in each

focus group.

[OT2]: “It doesn’t go upstairs does it... so you’d have to have another one upstairs" [OT3]:

“Potentially but that’s something you can get over isn’t it" [OT2]: “But I mean it is a real issue then

if someone’s downstairs during the day... then they’re upstairs for night time" [OT3]: “I’m sure

there is an adaptation you can stick on the bottom of the robot that she could get up the stairs"

The difference in participant acceptance before and after the study is also evidenced by the

results of a robot acceptance questionnaire (provided in Appendix A) administered pre and post-

focus group. The questionnaire results were quantified (using reverse coding where applicable)
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Statement Result
Apprehensive (Z = -2.818, p = 0.005
Intimidating (to Me) (Z = -2.309, p = 0.021)
Intimidating (to User) (Z = 1.811, p = 0.70)*
Good Idea (Z = -2.46, p = 0.014)
More Engaging (Z = -3.116, p = 0.002)
Useful (Z = -3.0, p = 0.003)
Improve Success (Z = -2.48, p = 0.013)

Table 5.2: Wilcoxon Signed Rank Test results (N = 19) comparing pre and post-session acceptance
questionnaire; all except * showing a significant increase in acceptance.

and a Wilcoxon Signed Rank Test was applied in order to measure the difference between the

pre and post data sets for each acceptance statement. All statements except ‘I think social robots

might be somewhat intimidating to service users’ showed a significant (p < 0.05) increase in

positive responses. The full results are listed in Table 5.2. The shift in acceptance is also shown

visually for each statement in Figure 5.2, which shows the spread of individual participant

responses, and Figure 5.3, which shows the shift in mean response across participants.

5.3 IML as Participatory Design for Mutual Shaping

5.3.1 How: IML versus Heuristic Implementation of an Autonomous SAR

The interactive, expert-in-the loop machine learning approach to automation was introduced

and explained previously in Chapter 4. Here, it is demonstrated how that approach (i) fits in

to a generalisable, end-to-end design, automation and deployment/evaluation process and (ii)

compares to the use of expert designed heuristics as an alternative way to automate robots

using expert input. Figure 5.4 presents both of these approaches in parallel, demonstrating

the similarities and differences between them. This work compares both the practicalities

of each approach as well as the autonomous systems resulting from them. For the heuristic

implementation, that is design and testing of an expert generated rule based system, resulting in

a fully autonomous system ready for deployment. For the IML implementation, that is design

of the naive system and teaching interface, then training of that system until it is capable of

running autonomously. Both processes were employed in parallel during the C25K gym study, to

design two alternate versions of the C25K gym coach. Both versions of the robot were then tested

with participants in order to allow for (i) comparison of their behaviour and (ii) within-subject

participant/fitness instructor evaluation of the two systems.

Co-design of the Base System

Both methods begin with co-design of the ‘base system’. This base system is the first version

of the robot that will be deployed in the wild for user testing. The first step in the design process
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Figure 5.2: Distribution of participant responses (N = 19) to each question on acceptance of robots.
For each question, the number of participants choosing each answer option is given for the pre
and post-hoc questionnaire, administered before and after the focus group.

171



CHAPTER 5. MUTUAL SHAPING IN DESIGN AND DEPLOYMENT OF SOCIALLY ASSISTIVE
ROBOTS

Figure 5.3: Mean participant acceptance scores with 95% confidence interval for the pre and post
session questionnaires as another depiction of the shift between them (N = 19). Numerical scores
represent coding of categorical answer choices shown in Figure 5.2, centered around 0 (neither
agree nor disagree) and reverse coded where necessary to always reflect acceptance (i.e. positive
score on ‘apprehensive’ = did not agree).

is introduction of the interaction scenario and proposed robot use case. This should be done at

a relatively abstract level, such that participants i) can shape and refine the use case based

on their expertise and experience and ii) can make recommendations/generate ideas unbiased

by the researchers’ preconceptions. The research team can then present more robotics-specific

related research, e.g. findings from previous work or related literature etc., before these ideas

are revisited, as per the focus group methodology discussed under Section 5.2. At this point, the

design team (researchers plus domain expert co-designer(s)) can start to draft the robot action

and input spaces.

The action and input space should then be refined through an iterative process which includes

physical prototyping (e.g. testing particular robot behaviours) and observations/testing in the

context of use (i.e. running mock interactions with the expert in the the normal setting - see

Figure 5.5). As discussed in Chapter 4, for the couch to 5km robot coach, this design work

consisted of 6 co-design sessions conducted over a period of 5 weeks, representing a total of 12.5

hours direct co-design work. The heuristic based and naive learning systems were designed

concurrently during these sessions. Resulting design of the heuristic system is presented in

Section 5.3.1.1 and compared to that of the naive IML system in Section 5.3.2.

Throughout this process, the role of the domain expert is to help identify what actions the

robot should be able to do (e.g. ‘ask participant how they are’) and what information might be

relevant to informing action choice and content (e.g. running speed, heart rate). The role of

the robotics researcher is then to consider more the how given e.g. the sensing and interaction

capabilities of the proposed robot system. However these roles should not be fixed in an ‘expert
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Figure 5.4: Alternative, generalisable, end-to-end participatory design and evaluation processes
as employed for Heuristic and IML versions of the C25K robot coach developed during this work.
Interactive machine learning as participatory design offers an alternative to using heuristics to
encode domain expert knowledge in autonomous systems. In-the-wild deployment and iterative
updating means that both processess can support mutual shaping to some extent, but the IML
process allows the expert to tailor automated robot behaviour, in real-time, according to their
tacit understanding of the situation.
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Figure 5.5: Fitness instructor putting a colleague through a mock Couch to 5km style session for
exploration and demonstration of instruction and encouragement actions.

wants x but roboticist can only provide y’ dynamic. Rather, all participants should be actively

working together to understand what’s wanted and what’s possible; reflecting the equal authority

of all participants that is key to participatory design.

Regardless of the approach to autonomy, key outputs from this part of the process include:

• Well-defined interaction scenarios regarding the role of the robot (updated to reflect expert

insight) and proposed ‘in-the-wild’ experimental design for IML automation and user testing

• Robot action space (base system outputs): a database of pre-programmed robot actions,

designed with/signed off by the domain expert(s)

• Robot input space (base system inputs): identification/ implementation of required inputs,

including any external sensors providing additional data input

For the heuristic based approach, rules for generating specific actions based on the available

inputs should also be produced at this point. The result is a fully-autonomous system ready for

deployment.

Design of the naive IML system requires identification of the action and input space only,

nothing about the rules that link them. However, additional design activity is required to produce

a teaching interface. It is through this interface that the expert will control and teach the system

during the learning and evaluation process. As such, it is sensible to include design of a teaching

interface in the participatory design process to ensure that the interface:

• provides the expressivity required for the expert to specify the social behaviours (action

type, content, timing etc.) to be taught.

• is intuitive when used in real-time within the context of use.
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Figure 5.6: Fitness instructor working on physical prototyping of the teaching interface.

For the C25K robot coach, this was achieved through paper prototyping (see Figure 5.6) and

testing of a draft implementation in a mock session, concurrently with action design, early in the

process.

For the IML approach, the result of this initial co-design process is the naive robot and

teaching system, made up of the following key elements:

• Robot with output actions and data input as per the base system (although likely to have

increased action/input space compared to heuristic system as per Tables 5.3 and 5.4)

• Naive machine learning agent ready to accept training examples

• Teaching interface through which the expert can provide teaching examples/feedback to

the learning system

As shown in Figure 5.4, both approaches can be implemented through an iterative process

which includes prototyping and testing in the context of use. Testing in the context of use is

particularly important because it can be quite difficult for professionals from human-centered

domains (e.g. health, education) to explicitly identify their reasoning in taking particular actions.

In-the-Wild Testing and Evaluation

In-the-wild user testing and evaluation is a key part of the proposed design process, regardless

of the approach to autonomy. However, as shown in Figure 5.4, its role in the overall design

process also represents where the two approaches really diverge. Details on each are given below.
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In both cases however key requirements for this testing, in order to support a mutual shaping

approach to robot design, are as follows:

1. Should be carried out in contextually appropriate environment (e.g. an actual gym for the

C25K robot)

to facilitate accurate rendition of natural and appropriate behaviours from the expert/accurately

assess performance of the system

2. Should be longitudinal, i.e. involves multiple participants for a significant period of time

to overcome inter-participant variability and novelty effect, and to allow for sufficient

generation of training data/iterating of heuristics

3. The domain expert should be present at all sessions

expert maintains active role in teaching and/or iteratively updating the system; also provides

a constant source of expert system evaluation

4. Recruited participants should represent realistic end-users of the system (not a convenience

population)

again to facilitate rendition of appropriate behaviours as well as minimise bias and max-

imise potential for generalisation of the resultant system

For the IML approach, how in-the-wild experimental time is ‘split’ between training and

testing/evaluation, as well as the choice of evaluation measures, will depend on the use case and

research questions of interest. However, the continual presence of the domain expert allows for

continued participation in evaluation of the system; so they should document observational notes

throughout. The result is an autonomous system, trained by an expert (and with the potential for

continual expert improvement) as per the C25K robot in Chapter 4.

For the heuristic approach, observations made by the expert co-designer can be used to

update the heuristic control logic. Ideally, user feedback should also be considered at this stage.

Depending on the application and stage in development, this could be done via the expert co-

designer (i.e. their observations including user feedback) or through inviting participants to

become co-designers of a next iteration of the system. This should be repeated iteratively until

all stakeholders are satisfied with the resultant system. The following subsection demonstrates

the resultant output of this process when applied to the C25K scenario, as a control/comparison

for the IML system presented in Chapter 4.

5.3.1.1 A Heuristic Based Couch to 5km Robot Coach

Design of the heuristic system was undertaken directly in parallel to design of the IML system,

as per the methodology presented in Figure 5.4 and the design activities highlighted in Table 4.1

of Chapter 4.

The overall motivation behind the design of the heuristic system was that it should:
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(i) challenge them if their speed was at 50% or below of their average walking/running speed

throughout the programme so far

(ii) reward them if they reached a new personal best speed

(iii) sympathise if their speed was in-between those two speeds described above and their heart

rate was at or above 80% their maximum recommended exercising heart rate

(iv) otherwise, if participants’ weren’t in one of the above categories, tell them to maintain their

current performance

Iterative updating of the system between Phases 1 and 3 of the study resulted in addition of the

following:

(v) ask participants how they are feeling half way through the run

(vi) tell participants to slow down if their heart rate exceeded their maximum exercising

recommended heart rate

Algorithm 4 shows the resultant algorithm for producing the H robot’s autonomous behaviour.

Notably, this resulted in a reduced action and input space compared to the IML system, demon-

strated by Tables 5.3 and 5.4 respectively. Even after iterative updating of the heuristics between

Phase 1 and Phase 3, the final heuristic control algorithm only utilises 6 actions, compared to the

12 actions available to the IML system. The fitness instructor was simply unable to extend the

heuristics further, to include actions such as humour, get closer or speed up for example because:

• no obvious, universal conditions for using such actions could be identified

• such actions were considered ‘risky’ by the fitness instructor; i.e. telling a joke at the wrong

time could severely negatively impact on credibility of the robot and/or user experience

• in the case of speed up, incorrect usage could potentially be unsafe

A similar case can be made for the comparatively reduced input space shown in Table 5.4.

For example, the fitness instructor identified that participant personality would be an important

factor in deciding how best a human and/or robot fitness instructor should try to motivate

them. However, he was not able to identify any way of explicitly linking e.g. personality type or

personality scores to specific use of the robot’s action space. This exactly echos results concerning

personalisation of therapist behaviour in Chapter 2. Therapists were similarly unable to identify

personalisation heuristics, even when working with an NHS-designed categorisation tool for

describing people’s attitude to healthy living and informing approaches to motivating/persuading

them. A key benefit of the IML approach is that it addresses exactly this - the expert can identify

such inputs without needing to also identify how they should inform system behaviour.
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Action IML-S IML-A Heuristic
Challenge X X X
Praise X X X
Sympathise X X X
Maintain X X X
Speed Down X X X
Check User Exertion X X X
Time X X x
Humour X X x
Animation X X x
Get Closer X X x
Speed Up X x x
Back-Off X x x

Table 5.3: Comparison of the action space available to the IML and Heuristic systems, the IML-S
column shows that all actions available to the IML system were executed and utilised by the
fitness instructor (in IML-S sessions). The IML-A column shows which actions were executed by
the IML system when running autonomously (in IML-A sessions).

Input ML Heuristic
Time since last action X X
Speed X X
Heart Rate X X
Session progress X X
Facial expression X x
Time X x
Programme progress X x
Personality traits Gosling et al. (2003) X x
Activity level X x
Attitude to exercise X x

Table 5.4: Comparison of input spaces for the IML and Heuristic systems.
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Algorithm 4 Final heuristic based control algorithm for Heuristic robot system, developed
initially during pre-study co-design and then updated ahead of Phase 3 testing based on the
fitness instructor’s observations during Phases 1 and 2. The lines marked * were additions made
during this update.
Input: State x

if x.session_progress == 0.5* then:
next_action = [SYMPATHETIC, CHECKPRE]

else if x.heart_rate >= 220-age* then:
next_action = [SYMPATHETIC, SLOWDOWN]

else if x.speed < average_speed
2 then:

style = random_choice[SYMPATHETIC, CHALLENGING]
next_action = [style, CHALLENGE]

else if x.speed >= personal_best then:
style = random_choice[SYMPATHETIC, POSITIVE]
next_action = [style, praise]

else if average_speed
2 =< x.speed <= personal_best and x.heart_rate >= 0.8× (220−age) then:

next_action = [SYMPATHETIC, SYMPATHISE]
else

next_action = [POSITIVE, MAINTAIN]

5.3.2 Why: Benefits of Process and Resulting Autonomous System

The results in Chapter 4 demonstrated the successful use of IML to create an effective SAR that

produced appropriate autonomous behaviour. However, to further demonstrate the benefits of

this approach specifically, the resulting system was also compared against the heuristic based

autonomous system described above. Within-subject comparison of the two systems was therefore

incorporated into the overall experimental schedule, specifically in Phases 1 and 3 of the study as

described in Chapter 4. As a reminder:

• In Phase 1 [8 sessions per participant]: Participants alternated between (a) the IML system

as supervised/ultimately controlled by the instructor (IML-S) and (b) the first iteration of

the H robot (H1) each session, for a total of 4 sessions with each. It was made explicitly

clear that the two robots were programmed differently (each robot was colour coded either

orange or purple) but not it was not explained how they were different.

• In Phase 3 [2+ sessions per participant]: Participants unknowingly worked out with IML-A

robot (i.e. they were not briefed about the change in robot control in any way) for two

sessions before the updated H robot (H2) was explicitly re-introduced for a single session.

The difference between the systems was hidden as previously.

As such, all participants worked out with the H robot for a total of 5 sessions. Specifically

concerning comparisons between the IML and H robots, Phase 1 was designed to allow within-

subject testing of the IML-S versus H robot, and Phase 3 was designed to allow within-subject
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testing of the IML-A versus (updated) H robot. Detail on the experimental measures designed to

capture participant experience of the programme and various robot conditions are described in

Chapter 4, and given in full in Appendix C.

5.3.2.1 Hypotheses

H1A The H system will produce behaviour very different to that of the IML-S/A systems (even

though it was designed by the same fitness instructor).

H1B The H system will not demonstrate personalised behaviour across participants.

H2 Participants will evaluate the the IML-S robot more positively than the H robot.

H3 Participants will evaluate the IML-A robot more positively than the H robot.

H4 The fitness instructor will evaluate the IML-A robot more positively than the H robot.

Note there is a subtle link between H2 and H3 regarding IML as a process in general

versus the work undertaken in the C25K study as specific implementation of that process. If

demonstrated to be true, H2 provides the motivation for attempting this IML approach when

considering SAR automation. H3 is then more a statement regarding how well the specific

implementation of this process, undertaken for this work (as presented in Chapter 4), was able to

deliver on that motivating factor.

5.3.2.2 Results

For these results, qualitative data regarding participant evaluation of each robot are taken

from questionnaires and post-session/weekly feedback collected throughout the study. Quanti-

tative data regarding the actions executed by each version of the robot (to compare for similar-

ity/differences in robot behaviour) are taken from a subset of the most comparable sessions. Table

5.5 identifies what session data were used to compare behaviour of the heuristic, supervised

and autonomous robot behaviour. The performance of the heuristic robot is compared to that

of fitness instructor supervised behaviour at two stages of the experimental study: Phase 1

(IML-S1 and H1) and the end of Phase 2 (IML-S2 and H2). The former analysis is based on 36

sessions: 2 heuristic and 2 supervised sessions per participant whereas the latter is based on only

a single session per condition per participant. Comparing these differences in Phase 1 and Phase

2 separately allows for comparisons between (i) behaviour of the heuristic system before and

after it was updated and (ii) behaviour of the supervised system fairly early on in the programme

versus later, when the fitness instructor may have been expected to understand participants’

differing needs better as he observed them training. The performance of the heuristic system

is also compared to that of autonomous behaviour demonstrated in Phase 3 of the experiment

(H2 and IML-A) based on comparisons across a single session per condition per participant. The
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Participant
Phase 1 Comparison Phase 2/3 Comparison
IML-S 1 H1 IML-S 2 H2 IML-A

LB 2,4 3,5 22 25 24
FB 2,4 1,3 21 24 23
DB 1,3 2,4 17 21 20
JF 1,3 2,4 22 25 24
MR 2,4 1,3 18 21 20
DP 1,3 2,4 24 27 26
JW 5,7 2,4 22 25 24
GB 2,4 1,3 23 26 25
PT 2,4 1,3 18 21 20

Table 5.5: Subset of sessions used to compare H, IML-S and IML-A robot behaviour.

compared sessions have been selected to be as similar as possible with regards to e.g. session

length and difficulty after accounting for any technical difficulties that prevent particular session

data being used.

Resultant Robot Behaviour

The distribution of (action-type and action style of actions executed by each version of the

system are shown in Figures 5.7 and 5.8. Figure 5.7 also demonstrates the impact of the reduced

action space available to the heuristic system, as presented in Table 5.3 and discussed in Section

5.3.1.1. Fisher’s exact tests were applied to these distributions within-participant, to test whether

each version of the robot produced significantly different behaviour for the same participant. For

all 9 participants, the heuristic system produced behaviour significantly different to that of the

IML system, both as supervised in Phases 1 and 2, and when running autonomously in Phase 3.

In addition, they demonstrated that the updated Heuristic system (H2) behaved significantly

different that the first iteration (H1) for all participants. The full results table is presented in

Appendix D.

As discussed in Chapter 4, it should be noted that comparing overall action distribution

is only a partial measure of how similar the sessions are (as it doesn’t account for e.g. timing

of actions within the session). Further such a comparison does not give any indication of how

appropriate those (dis)similar distributions might be, given that two ‘good’ sessions, where the

robot acts appropriately, may have very different action distributions. The results demonstrate:

(i) The heuristic robot produced significantly different behaviour to that of the IML system

(both when supervised and when autonomous) across all participants.

(ii) The updated heuristic robot (H2) produced significantly different behaviour to that of

the initial heuristic robot (H1) across all participants. This demonstrates that the fitness
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instructor-led update to the rule based driving the Heuristic system, implemented between

Phase 1 and Phase 3, had a significant impact on the system’s resultant behaviour.

These results provide strong support for hypothesis H1A: the H system will produce behaviour

very different to that of the IML-S/A systems (even though it was designed by the same fitness

instructor). This is likely due, most of all, to the difference in action spaces available to the robot.

As discussed previously, the Heuristic system had a smaller action space than the IML system

due to the fitness instructor being unable to generate heuristics for utilising some of the more

complicated social actions.

The distribution of (action-type and action style of actions executed by each version of the

system are shown between participants is shown in Figure 5.9. Fisher’s exact tests were applied to

these distributions between-participants, to test whether either iteration of the Heuristic system

produced significantly different behaviour across participants. For the first iteration H1, there

were only 5/36 pairwise participant comparisons that were not significantly different. For the

second iteration H2, this increased to being 11/36 pairwise participant comparisons that were

not significantly different. The full results table is presented in Appendix D.

These results suggest that actually the heuristic based system did result, on the whole, in very

different behaviour across participants. As such, there is strong evidence against hypothesis H1B:

the H system will not demonstrate personalised behaviour across participants. The input space

for the Heuristic system means these differences can only be driven by dynamic performance of

the individual (with respect to their previous performance) and so therefore presumably simply

reflect variation in participants’ efforts and relative performance in those sessions selected for

comparison.

Participant Evaluation

Figure 5.10 shows participant responses to questions on which robot (if any) (i) they performed

best with, (ii) they preferred and (iii) they would prefer to work with in future, collected at the

end of Phase 1 testing and again during Phase 3 testing. At both of these timing points, the IML

robot was the most commonly given answer across all three measures. However, the results were

not unanimous, and the distribution of answers did change between the Phase 1 and Phase 3

testing. In the Phase 3 questionnaire, participants were also asked to describe both the IML and

H robots as fitness instructors, and any perceived differences between them. Their answers are

provided in full in Appendix D.

At both times of testing, 3/9 participants felt they performed best with the heuristic system,

although only 1/3 of those participants (LB) gave this answer at both Phase 1 and Phase 3. LB

did not provide any reasoning for this choice at either stage of testing. The other two participants

who felt they performed better with the heuristic robot in Phase 1 expressed an overall preference

for the heuristic robot across all of the measures. For DB this appeared to be a clear preference:
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Figure 5.7: Comparison of action-types produced by supervised, heuristic and autonomous robots.
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Figure 5.8: Comparison of action styles produced by supervised, heuristic and autonomous robots.
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Figure 5.9: Style and action-type of actions executed by the heuristic system across participants.

[DB]: ‘[H] was nice and encouraging and got the balance right; [IML] is annoying...too much

info’

whereas DP suggested he saw little difference between them:

[DP]: ‘I do not really notice the differences’.

At Phase 3 testing, the other two participants who felt they performed better with the heuristic

robot MR commented this was ‘only a little’, and responded with ‘no difference/preference’ to

the other two questions, whereas for JF, this seemed to be linked with her perception of the

differences between the two systems:

[JF]: ‘I think the [H] robot focused more on trying to get people to put in the most or more effort

whereas the [IML] robot was more gentle and wanted people to just try the best they could’.

This was also reflected in their answers to the questions on which robot they preferred (no

preference):

[JF]: ‘I think it would depend on where I was in the training programme and what type of day

I was having’ and would rather work with in future (H): ‘I’d want to push myself now and this

one would be better though [IML] better on days feeling a bit weaker’.

Comparing individual participants’ questionnaire responses at Phase 1 and Phase 3: 5/9

participants gave different answers to all three questions, 2/9 participants gave different answers

to two questions, 1/9 participants gave a different answer to a single question only and 1/9 partici-

pants did not change their answers at all. Figure 5.10 shows this manifested as more participants

having less clear preferences (i.e. selecting ‘no difference’) in the Phase 3 questionnaire. Potential

reasons for this shift could be:

1. Autonomous behaviour of the IML robot had a negative impact on participants’ preference

for it/perception of it, thus reducing preference compared to Phase 1 testing.
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Figure 5.10: Participant preferences regarding a) the Heuristic and IML-S robots at the end of
Phase 1 and b) the Heuristic and IML(-S/-A) robots after at least 2 sessions with the IML-A robot
at the end of Phase 3. Whilst the aim of the secondary round of questions was ideally to have
participants compare the Heuristic and IML-A systems, it cannot be guaranteed that participants
were not drawing on their overall experience with the IML system (i.e. including those sessions
where the robot’s behaviour was ultimately controlled by the fitness instructor). Figure shows
responses to questions on which (if either) of the two robots i) encouraged them to perform better,
ii) they preferred and iii) they would prefer to work with in future, collected at the end of Phase 1
(after alernate testing of the H and IML-S robots) and during Phase 3 (after at least two sessions
working the IML-A and one session with the updated Heuristic robot).
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As discussed in Chapter 4, on making the switch from supervised to autonomous operation

of the IML robot, only 2/9 participants directly noted a negative change in their post-

session feedback. 4/9 participants gave no indication that they noticed any change at all.

Similarly, other than DB who expressed an active dislike of both robots/preference not to

work with any robot again in future, no participants left any negative feedback concerning

the IML robot during the end of experiment measures. The same cannot be said for the

Heuristic system, for which e.g. GB and DP both left negative feedback after Phase 3 testing

- discussed further under point 2.

2. There was less perceived difference between/impact of IML-A robot versus Heuristic robot

behaviour (following the switch to autonomy and iterative updating of heuristics between

Phases 1 and 3).

Participant feedback suggests 8/9 participants perceived some identifiable difference be-

tween the heuristic and IML robots during Phase 3 testing, suggesting they were distin-

guishable. However, the nature of these comparisons varied across participants based on

the specific behaviour they had seen, in some cases (as previously discussed for JF) these

differences also represented participant reasoning for having no preference between the

two systems. 3/9 participants documented strong negative reactions to the Heuristic robot

specifically:

[GB]: ‘I’m not a big fan of the [H] robot...it was quite annoying and difficult to run with. I

didn’t like the fact it was telling me to slow down from a pace that I was comfortable with,

its repetitiveness and negativity was doing my nut in.’

[DP]: ‘[H] pepper was very different...I did not find it helpful’

[DB]: ‘I hate [the H] robot she is incredibly annoying’

In addition, 4/8 participants who then proceeded to work out with the IML-A robot again,

after working with the Heuristic robot, specifically praised it/identified as being happy to

swap back, including MR who had previously explicitly suggested they had no preference

and FB who didn’t describe any significant difference when comparing the two robots:

[FB]: ‘glad to have [IML] robot back today! loving the little dance moves at the end’

[MR]: ‘I hadn’t realised how much the [IML] version of pepper actually helps me to keep a

positive mindset’

3. Effects stemming from the long-term nature of the study and/or complex testing sched-

ule/experimental design.

The long-term nature of the study and the repetitiveness of interactions inherent to the

couch to 5km programme make it likely that participants were no longer experiencing

much, if any, novelty effect on working with the robot towards the end of the programme.

Further, given that the robot was programmed with a limited set of speech utterances,

participants became familiar with these specific phrases and were increasingly aware
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Figure 5.11: Participant post-session evaluation of the robot across conditions, normalised for the
number of each session type.

of/somewhat fatigued by repetition in the robot’s speech as the study progressed (evidenced

by qualitative feedback in the post-session measures). This repetitiveness was common

across all robot conditions, potentially therefore reducing the perceived difference between

them:

[DB]: ‘I don’t tell the robots apart [H], [IML] - makes no difference, as the text is repetitive’

Compounding this, the Phase 3 experimental schedule was designed such that participants

only saw the updated heuristic robot for a single session, meaning that participants may

have been wary about dismissing it/did not interact with it long enough to have a clear

preference (as they did in Phase 1):

[JW]: I didn’t really have time to get to know [H] Pepper so I don’t know which I’d prefer.’

Figure 5.11 shows participant normalised evaluation ratings of each robot condition, as

collected after every session. It can be seen that the H1 robot received a lot more ‘ok’ ratings

than the equivalent IML-S at Phase 1 robot, and similarly the H2 robot received a lot more ‘not

great’ ratings than the IML-A robot. Only the IML-S and H1 evaluation scores were significantly

different however, as demonstrated by a Fisher’s exact test returning p < 0.01.

Overall, these results provide moderate-to-strong support for H2 and H3: participants will

evaluate the the IML-S robot more positively than the H robot and participants will evaluate the

IML-A robot more positively than the H robot as most participants did evaluate the IML system
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more positively than the H robot overall. However, they also demonstrate evidence for the idea

that preferences for robot style or behaviour vary both between and within-participant, and that

for one participant in particular there was simply no desire to really work with the robot at all.

This in itself is an unsurprising result, and completely consistent with previous discussion

on (i) the need for personalisation and (ii) the recognition that there are some people for whom

a robot would never be appropriate nor accepted. Further, these results reflect what might be

expected for any fitness instructor, whether they be robot or human, in that different clients will

prefer different instructors, potentially even on different days, based on how they are feeling etc.

Fitness Instructor Evaluation

Fitness instructor notes from Heuristic robot sessions in Phase 1 and Phase 3 testing (provided

in Appendix D) were checked for references to the robots performance. The Phase 1 feedback

is relatively mixed, with evidence of sessions made up of good/appropriate action choices but

also where this was lacking. A common theme also appears to be the potential for repetition and

lack of variety in the robot’s actions in some sessions. The Phase 3 feedback is similarly mixed

but arguably showcases much stronger criticism of the Heuristic system in particular sessions,

specifically for participants DB, DP and GB. A common theme here appears to be the lack of

evolution of behaviour/speech throughout the session, such that e.g. the robot does not offer more

challenging actions near the end of the run as the instructor may do.

In a post-study interview, the fitness instructor was asked specifically to reflect on performance

of the Heuristic system, as per the following extract:

[KW]: Final comments on the heuristic robot versus the learning one - how did you feel in the

end? Looking back, you obviously were heavily involved in both of them. Any strong thoughts or

feelings when you think back about how they both performed?

[Instructor]: So obviously the heuristic was the best sort of hard-coded idea we could produce

and it was, it really was. It was intelligently designed with good sort of specifications about the

situation and the physical performance of what’s going on, and it did do alright. Especially in

those early runs when they were really short, and so like the frequency of the speech wasn’t too bad.

It was good. It’s just when the runs started to get longer and the clients you know, were a few weeks

into the programs so the clients already started to know Pepper’s speech. That’s when it started to

just sort of fall short of expectations and just no longer became that sort of, that successful control

and it started to show there was more sort of that robotic, repetitive. It’s not really taking into

consideration the full aspect of what’s going on, the situation, whereas the with the learned A.I., it

made some intelligent decisions. It like, oh, sometimes it was slow, but it made those decisions. And

there are some some cases where I thought, you know, the client was really pushing themselves,

they’re finding it tough. And the robot asked how they were, which was the perfect time to answer

that intelligent question. And it responded to the client’s response and in the appropriate manner.

It was really good. And I couldn’t see the control making that same, like it couldn’t even make that

behaviour. So, um, yeah, I really saw a difference. And I could tell that that level of teaching or
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reinforcement really, yeah really did stick, really paid off.’

Overall, these results provide strong support for hypothesis H4: the fitness instructor will

evaluate the IML-A robot more positively than the H robot.

Other Benefits of the IML Process vs Heuristic Design

In addition to the increased action/input space, another key benefit inherent to the IML

process but much less feasible for heuristic design, is the potential to reflect dynamic changes in

desired behaviour (demonstrated in Chapter 4). This allows for changes in the instructor’s use

of the IML system based on e.g. increased understanding of the participant and/or participants

needs changing as the programme difficulty increased. In the Phase 3 questionnaire, participants

were asked whether they perceived a difference in either of the robot’s behaviour over the course

of the study. 5/9 perceived a change in the IML robot’s behaviour. None of the associated comments

were negative, nor mentioned behaviour changes that might be associated with switching from

supervised to autonomous (e.g. increased repetition), but rather cited the an improvement in the

robot’s ‘understanding’ of them/ability to motivate them. In the case of FB, this was also their

explicit reasoning for preferring the IML robot over the H robot:

[FB]: ‘I didn’t prefer the [IML] robot in the beginning because I thought it was a bit pushy.

After the initial sessions, I felt it included more encouraging/supportive phrases and had a good

balance with the phrases designed to push you. They were also well placed within the runs (often

towards the end where you might need more motivation).’

[PT]: ‘I think now [the IML robot] is more informed and gives more accurate feedback (i.e.to

slow down when I am really tired)’

[JF]: ‘[the IML robot] seemed like it got more helpful in getting me to find a flow’

[GB]: ‘It’s hard to say whether the [IML robot] actually developed or whether my familiarity

with it just improved, but it seemed like towards the end it’s commenting was at the right frequency,

whereas earlier on in the program I thought it was commenting too much or sometimes too little. I

also don’t know if the types of comments it chose changed, but I certainly found what it said to me

more useful at the end than it did at the beginning.’

Such comments are further evidence that the fitness instructor did increasingly tailor the

robot’s behaviour based on his understanding of what worked well for these participants as he got

to know them. This learning is reflected in notes he took for himself through the programme, e.g.

push her/keep her interested, challenge further, starts off way too fast etc. and the personalisation

of IML robot behaviour discussed in Chapter 4. Such personalised and/or programme specific

changes are very difficult to implement into population-wide heuristics. Essentially, the IML

process offers improved flexibility/ease of reacting to change when compared to heuristic design.

This flexibility is specifically what gives the IML approach increased potential to support a mutual

shaping approach to robot automation. Specifically, it allows for expert shaping of autonomous

robot behaviour to reflect any desirable changes resulting from the manifestation of mutual

shaping effects that only become apparent on robot deployment. GB’s comment specifically also
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identifies the potential for another type of mutual shaping effect that affects quality of interaction

and hence effectiveness of the system; that of user familiarity with/adaptation to its use.

Finally, it seems likely that the active, real-time involvement of a domain expert required for

this IML automation process would have a positive impact on (i) increasing acceptability of and

(ii) reducing ethical risk associated with the resultant system. Results in Chapter 4 demonstrated

that the instructor’s presence throughout the study had a positive impact on participants’

confidence in working with the system, and so it seems likely that making participants fully

aware of his role in training the system would have a positive impact on acceptance of resultant

autonomous behaviour. On ethical risk, the involvement of a domain expert who can tailor

the robot’s behaviour, in real-time, to a particular user’s needs, and/or intervene to prevent

particular behaviours being executed, offers both increased safety but also reduces the risk of

dehumanisation associated with human-robot interaction (particularly where robots are guiding

or instructing user behaviour) as described in BS 8611 BSI (2016).

5.3.3 Mutual Shaping: Interactions Between the IML System, Fitness
Instructor and Participants

The real world deployment of the IML robot necessary for its automation also allowed for the

observation of mutual shaping effects regarding its use. One particularly clear example of such,

which emerged towards the end of the study, was the fitness instructor’s use of the robot in the

case of overlap between participants. As the study progressed, exercise times became longer and

so the ‘spare’ time between participant sessions was reduced. However, the instructor also felt

that, as sessions got longer, it was important he guided participants through some stretches

directly after the run to prevent any injury. This would sometimes result in the next participant

arriving whilst the previous participant was still stretching. At that point, the instructor would

welcome the next participant, get them set up with the heart rate monitor and on the treadmill,

launch the robot-led session and return to finish off the previous participant’s stretching whilst

the next participant completed the (fully automated) warm up. As well as being a clear example

of unplanned system use emerging through use, this is also an excellent demonstration of the

potential such a system has to be useful in the real world. Further, this behaviour seems to have

played a significant part in shaping how the instructor perceived the robot.

[KW]: Did you perceive the robot like a team-mate or a colleague or was it just a tool for you?

How did you feel about Pepper?

[instructor]: ‘It was definitely more of a colleague than a tool. Like Pepper wasn’t a dumbbell

or a kettlebell It was a colleague that you interact with in the gym. You know, I like to think her

maybe early bugs or quirks definitely gave her a bit more of a personality that maybe I held on to.

And obviously each of the clients would interact with her differently, which also gave her sort of

more of a personality. And I could definitely feel, especially when the sessions got busier, runs got

longer I had less time between each client being able to sort of work with and interact with Pepper
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like you know, sort of dictating or coordinating other tasks while I was busy doing something else.

So we could work together doing separate things but to get more work done and I think that’s

that’s more of a teammate colleague trait than a tool. I’d like to see my hammer build my table for

me.’

The instructor was further questioned regarding his role versus the robot’s and how he

thought participants might perceive them:

[KW]: When you were working with participants in a session. What do you think your role

was versus the role of the robot in interacting and working with that person?

[instructor]: ‘I feel, depending on what stage of the program really, I guess the main bulk of the

program was me teaching sort of the AI what to say. I would say for the main majority of the study

I was a teacher figure that would work with the robot and the robot would be the trainer that

interacts with the client. And I sort of, I kind of just make comments on that robot’s performance

interacting. And obviously the client doesn’t know that I’m sort of reinforcing or praising, that

robot’s sort of actions and behaviours. So it’s quite. It keeps me separate from the client, but still in

the loop of the whole thing.’

[KW]: So do you feel like you you’re separate from the client? Do you think that that’s how

they perceived it as well? I mean, do you really feel like when they were working with the robot,

they were working with the robot? Do you feel like you were very involved in that?

[instructor]: ‘I think the majority of the time, it was the client and the robot. But there were

there were always times where like the fourth wall was broken so to speak especially in in sort of

scenarios that we couldn’t predict like a shoe lace comes untied or someone needs a wee. And so

they often would look to me rather than the robot as the instructor. So I feel that the lines were

blurred but for the majority. It was. It was Pepper.’

In the Phase 3 questionnaire, participants were explicitly asked to briefly describe the role

of the robot, the fitness instructor and the researcher (author) in the context of delivering the

programme. Their answers are presented in full in Appendix D. Participants appeared to identify

separate but complimentary jobs performed/roles taken by the robot and the instructor, specifically

that the robot delivered the exercise programme with the instructor being a background (but

motivating) presence who also aided with stretches and therefore confidence in the programme.

This reflects the instructor’s comments above regarding participants working with the robot

for the majority of the time. The instructor was also asked the potential impact of his presence

during the post-study interview, and recognised (i) he likely did have some impact on participant

motivation but also (ii) that his relationship development with participants was less than it

would be in a traditional training scenario:

[instructor]: ‘I think it’s definitely interesting how such sort of complex or perceived complex

social behaviours and work tasks can be boiled down to sort of simple instructions and behaviours’

[KW]: Do you feel like you had a social influence on participants as well as the robot? Do you

not think that they were partly there to see you and maybe even to some extent me, to please me
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as the researcher as well as interacting with them?

[instructor]: Definitely. Definitely. But I think at least having that kind of robot instructor still

offers a standard like. Just knowing what it knows.’

[KW]: But what do you think or to what extent do you think the participants still showed up

and gave their effort for you even though they were working with the robot?

[instructor]: ‘I think I definitely still had some underlying sort of effect or some sort of mo-

tivation because, you know, I did care about their, uh, their progress and their health. And so

obviously, that will be a motivator. But whether, whether was just down to me, whether whether

any instructor would still have that presence, I don’t know.’

[KW]: Do you feel like you made a relationship with the participants? Like a client relation-

ship? You feel like you had a rapport with them?

[instructor]: Yeah. To some degree, To some degree. Not as much as I would, let’s say of the

robot hadn’t been there. Definitely. Definitely.

Together, these results demonstrate the complexity of interactions and mutual shaping

between the fitness instructor, robot and participants. The main exercise interactions were mostly

between the participant and the robot, and teaching of the IML system was completely between

the fitness instructor and the robot. However, it’s clear that overall engagement with/delivery of

the programme ultimately represents a triadic interaction between the instructor, participants

and the robot. At odds with traditional lab-based HRI studies that often explicitly aim to reduce

external human presence of e.g. the researcher or other bystanders, this represents a more

holistic and realistic consideration of HRI in-the-wild as might actually result from real world

robot deployment. Such consideration is both academically interesting, but also crucial to the

development of effective systems that will have maximum positive impact on deployment.

An important element of mutual shaping not considered here is if/how/to what extent the

suggestions made by the Learner of the IML system may have influenced the fitness instructor.

For example, had the Learner not been making suggestions, such that the robot was entirely

controlled/teleoperated by the instructor, would the action distribution and timing of actions

remained the same? Further, if the instructor did not have the ability to actively reject suggestions

(indicating that the Learner was not producing appropriate robot behaviour) would he still have

identified those actions as being inappropriate? This is particularly interesting given the high

number of suggested actions still being rejected at the end of Phase 2, immediately followed by

seemingly appropriate robot behaviour overall positively evaluated by the instructor himself in

Phase 3. Success of this approach inherently assumes that the domain expert/system ‘teacher’

would provide a ‘correct’ and fairly consistent response; i.e. that their unprompted actions and

accept/reject decisions would not be overly affected by the type and timing of system suggestions.

The results in Chapter 4 suggest that the IML approach does fundamentally ‘work’ for automating

robot behaviour, but these questions are directly linked to its efficacy and thus warrant further

investigation.
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In addition, something difficult to measure or directly observe is how participants’ themselves

may have adapted to use/interaction with the robot, and the impact this may have had on the

quality of interactions. This is specifically highlighted by GB’s comment, highlighted in the

previous subsection:

[GB]: ‘It’s hard to say whether the [IML robot] actually developed or whether my
familiarity with it just improved, but it seemed like towards the end it’s commenting was at

the right frequency, whereas earlier on in the program I thought it was commenting too much or

sometimes too little. I also don’t know if the types of comments it chose changed, but I certainly
found what it said to me more useful at the end than it did at the beginning.’

Here, GB essentially describes an inability to objectively evaluate any changes in the robot

due to recognising that their perception of/familiarity with the system was similarly dynamic

over the course of the programme. Traditional lab based HRI studies will often consider this

within the context of ‘novelty effects’ - i.e. that a robot may be evaluated overly-positively in

early sessions with naive users due to the novelty of working with said robot. With repeated

interactions, this effect would be expected to wear off, such that evaluations of the robot may fall

and/or plateau. However, GB’s comment points to a slightly different phenomenon, the potential

for increased utility and effectiveness through user adaptation to/familiarity with the system. The

relatively fixed nature of the experimental schedule and delivery of the couch to 5km programme

reduced the potential for system use to significantly impact e.g. participant approach to exercise

or exercise behaviour, however if a system like this were to be deployed in the home, these kinds

of effects would likely be more significant, and so should also be considered in order to fully

understand the impact of system deployment. Specifically, they might also offer some ‘hope’

against the general idea that once novelty effects have worn off, social robots would cease to be

engaging and/or therefore useful.

5.4 Conclusion

This chapter explains how the generalisable methodologies employed for (i) the study with

therapists of Chapter 2 and (ii) development of an autonomous SAR in Chapter 4 support a

mutual shaping approach to SAR design and development. These methodologies are situated

with respect to existing design methods for mutual shaping and how these have been applied in

the context of SAR design, development and evaluation. Additional results from those works are

also presented in order to demonstrate (i) why taking such an approach is worthwhile and (ii)

evidence of mutual shaping that emerged during their implementation. To this end, key findings

demonstrated in this chapter can be summarised as follows.

On focus groups for mutual shaping:

• Allowing broad discussions ahead of researchers presenting their proposed application(s)/research
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agenda allows for identification of applications, use cases, opportunities and concerns that

the researchers may not have considered/been aware of.

• A focus on mutual learning between researchers and domain experts allows for more

informed discussion then relating to the proposed use case(s), with participants able to

identify potential mutual shaping effects that would impact real world robot deployment

and use/effectiveness.

• This focus on mutual learning has the potential to significantly improve participants’

acceptance of robots.

On interactive machine learning (IML) as participatory design:

• As a method for designing and automating SAR behaviour, IML can result in a better

(larger action space/more varied behaviour, evaluated more positively by users and a

domain expert) autonomous system than can be achieved with a heuristic based approach.

• The IML approach also better supports a mutual shaping approach to robot design, as it

allows for expert shaping of autonomous robot behaviour to reflect any desirable changes

resulting from changes in the context of use/observation of mutual shaping effects on

(long-term) deployment.

• The real world deployment of the robot utilised for training the IML system allows for

the observation of mutual shaping effects that could not be captured in laboratory based

studies (and as above, robot behaviour can be adapted reactively to such effects if required).

Combined with the results in Chapter 2 and 4, these findings demonstrate the synergy

between wanting to pursuing a responsible approach to robot design/development as well as

develop systems that are going to be effective in the real world. Across both methodologies, the

focus on stakeholder inclusion and broad consideration of how robot deployment may impact

on the social environment in which it is used, make them responsible design methodologies.

For the IML process specifically, having an expert human-in-the-loop also reduces ethical risks

regarding user safety and de-humanisation (discussed in Chapter 4). However, practically and

technologically speaking, both methodologies were also demonstrated to be ‘the right tool for the

job’. Results from the focus groups were sufficient to generate a rich set of design guidelines that

informed later work in the thesis as well as representing a significant research contribution in

their own right. Similarly, the IML process was demonstrated to result in a better autonomous

system than the ‘next best’ participatory design option of heuristic based system design. As

such, the work presented in this chapter should also provide strong motivation for pursuing a

responsible, mutual shaping approach to robot design/development, rather than technologically
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deterministic approaches that might consider ethical considerations and responsible innovation

as a ‘checkbox exercise’ that may actually hinder research processes.

5.4.1 Limitations

A key limitation regarding how both of these methodologies were applied in this work is the lack

of including system users (therapy patients and couch to 5km participants respectively) during

the design/evaluation processes. As discussed in the introduction, inclusion of all stakeholders

is a key aim of mutual shaping approaches to robot design/development. It is important to note

that this is not a limitation within the methodologies themselves. The focus group methodology

described in Section 5.2 would be equally well suited to exploring robot design with users as with

domain experts. In its application to the study with therapists, the focus was simply on working

with domain expert practitioners, in the first instance, because the purpose of the study was to

inform the initial design of a robot that would play a similar role to that of those practitioners.

For the IML methodology, it is harder to imagine how e.g. an end user could be the expert-

in-the-loop providing training examples and feedback, specifically in the context of SARs which

essentially need to convince such users to undertake/stay engaged with a task they may not really

want to do. Across both studies, a desire to include end users in the robot’s design and evaluation

would raise the interesting issue of how users, who in theory are using the robot precisely because

they themselves are not good at knowing/implementing what they need to stay motivated, can

make the most useful input to these processes. For example, including users in initial detailed

co-design of e.g. encouraging actions may not be appropriate, but they could certainly be included

in preliminary testing of those actions designed with a domain expert. However, this also raises

a number of interesting research questions regarding e.g. if, how and whether having one end

user act as the expert-in-the-loop training the robot for another end user might actually impact

on that end user’s own self-understanding and motivation to engage with the task. The impact

that training a robot via the IML process might have on the human-in-the-loop providing that

training data is another aspect of mutual shaping that could be considered in more detail in

future works.
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CONCLUSION

The overall goal of this work was to demonstrate a fully autonomous, socially assistive

robot (SAR), developed using an expert-informed and mutual shaping approach, and

deployed meaningfully in the real world. This was successfully achieved with the C25K

robot coach described in Chapter 4, informed by the study with therapists in Chapter 2 and

results regarding persuasive SAR behaviours in Chapter 3. Chapter 5 then identifies exactly

how a mutual shaping approach was taken through the work as well as demonstrating why that

proved valuable. As individual work packages, each of these chapters address a specific set of

research questions to make one or more contributions to state of the art. A brief overview of each

chapter and how the work progressed is given below.

Chapter 2 presented a qualitative study with therapists designed to understand (i) how they,

as experts in socially assistive interaction, have an impact on service users’ engagement with

prescribed exercises and (ii) exactly what role a SAR might take in attempting to support that.

A novel focus group methodology, with a focus on mutual learning, was designed to support a

mutual shaping approach to this study. Chapter 5 presents results suggesting this methodology

positively impacted on participants’ acceptance of SARs, and generated significant additional

insight into important considerations for real world SAR deployment. The results demonstrated

that therapists knowingly use social interactions (purposefully tailoring their social behaviour)

in order to affect changes in user behaviour through social influence. All of the findings were

used to produce a generalisable set of design guidelines for SARs.

Informed by the study with therapists, Chapter 3 discussed whether task-focused, socially

assistive HRI could be modelled as persuasion, based on social influence literature regarding

human-human interaction (HHI). Specifically, it was posited that the Elaboration Likelihood

Model (ELM) of persuasion from HHI might be able to usefully inform SAR design. A laboratory

197



CHAPTER 6. CONCLUSION

based HRI study demonstrated that two out of three persuasive strategies derived from the

ELM objectively increased the persuasiveness of a SAR in the context of encouraging exercise

repetitions. This study also considered the acceptability of these persuasive behaviours and their

purpose, in recognition of the fact that they might be considered ethically hazardous according

British Standard BS 8611 on the ethical design of robotic devices (BSI 2016). The significant

majority of participants found them to be acceptable (even if potentially deceptive) for the

proposed use case.

Chapter 3 also presented another two preliminary, online, studies to investigate the potential

impact of explicitly designing such behaviours in a way that better complied with the recommen-

dations given in BS 8611. The results suggested that in some cases it might be possible to be

more effective whilst also being more ethical, specifically in the context of referring to a human

expert when citing expertise or referring to medical/technical specifics surrounding the prescribed

exercises. However, for the more general socially supportive SAR behaviours considered by this

thesis (e.g. affectively encouraging the user) then it might be beneficial for the robot to present

itself (anthropomorphically) as an independent social agent. An additional related finding was

that preferences regarding these social behaviours can vary significantly, with some users likely

to prefer having zero social interaction with the robot at all.

Chapter 4 tackled the overall goal of the thesis to design, automate and evaluate a SAR in

the real world. A ‘C25K robot coach’, co-designed with a fitness instructor, was developed to guide

and encourage people through the NHS Couch to 5km programme. The role and behaviour design

for the robot coach was further informed by the results from Chapters 2 and 3. The robot was

designed to be automated through Interactive Machine Learning (IML), initially teleoperated

with the fitness instructor observing the robot-user interaction and generating robot actions via

a teaching interface, with the system learning from these teaching examples and eventually

making its own action suggestions. An experimental study was conducted to train the robot then

test its resulting autonomous behaviour whilst putting 10 participants through the Couch to 5km

programme. A total of 151 sessions were spent training the system, which was then allowed to

run 32 sessions autonomously (2-4 per participant). Results demonstrated that the IML system

successfully learned what actions to do for whom but had mixed performance regarding when to

do them; specifically suggesting actions too often.

A heuristic based version of the C25K robot roach was designed alongside the IML system, to

represent an alternative expert-informed approach to generating autonomous behaviour. This

robot was also deployed during the gym based experimental study as a within-subject manipula-

tion, with participants asked to compare the two different versions of the robot coach, without

knowing if/how they were programmed or designed differently. The results, demonstrated in

Chapter 5 suggest the IML approach did result in an overall ‘better’ system, but also demon-

strated again the potential for variation of preferences both within and between participants.

Chapter 5 further evaluates both approaches as design processes that can support a mutual

198



6.1. GETTING HUMAN, DOMAIN EXPERT KNOWLEDGE INTO SARS (RQ1)

shaping approach to SAR design.

Bringing these chapters together, as a whole, this work addresses the following, broader

research questions, as set out in the Introduction.

6.1 Getting Human, Domain Expert Knowledge into SARs
(RQ1)

How can human, domain expert knowledge, particularly regarding intuitive and experience-based

social/emotional skills, be captured and utilised in the design and automation of a SAR?

The study with therapists built on previous participatory and user-centered design literature

to demonstrate how focus groups and interviews with domain experts can generate design

guidelines for informing SAR. Through the study methodologies employed, therapists were able

to identify a number of ways they impact on exercise engagement/adherence, as well as ways

in which a SAR might also support that. However, when it came to more detailed descriptions

of complex behaviours, e.g. how they might decide what type of approach to take with different

service users, it became clear that these sorts of decisions and behaviours were based on intuition.

As such, whilst therapists were able to list some of the factors that might inform their behaviour

and approach, and identify some of the ways they might tailor their behaviour, they couldn’t

describe any definable rule set for linking the two.

Concerning automation of behaviour then, this points towards trying to learn from expert

behaviour ‘in action’. Sussenbach et al. (2014) successfully used such an approach, conducting

ethnographic observations of a human fitness instructor and using the coded results to inform

design of a motivational interaction model. An alternative approach would be to apply machine

learning to such coded observation data. However, there are two key issues with attempting

to using coded observational data in this way. Firstly, the complexity of these socially assistive

human-human interactions makes them exceedingly difficult to code. A small number of therapy

sessions were informally observed by the author alongside the focus groups and interviews

described in Chapter 2. Reflecting what was said in the focus groups and interviews, therapist

behaviour was seen to significantly vary across service users, based on a huge number of factors

unique to each individual. As such, it remains difficult to imagine how such data could be coded

in a useful, generalisable way. Secondly, even if feasible, this approach would assume that the

ultimate goal for a SAR is just to exactly replicate HHI behaviour. This seems like an unnecessary

limitation on SAR design, and does not support any potential for adjustment of automated

behaviour in response to mutual shaping effects.

The IML approach demonstrated by Senft et al. (2019) and employed in this work addresses

both of those issues. It puts the expert directly in the automation loop such that they can

provide training examples and feedback to the system in realtime. As such, their training

examples/supervisory behaviour can be guided by the same intuition and social intelligence
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that guides their own interaction behaviours. Design of the naive system requires the expert to

identify only (i) what the robot should be able to do and (ii) what ‘input factors’ might be relevant

for informing its behaviour; without having to give a detailed why to link those together. This

reflects the type of information generated by the focus groups and interviews of the study with

therapists. In addition, co-design of the IML robot’s action space, combined with the realtime

training setup further allows the expert to essentially teach the robot what it should do, not

necessarily what they would do. This was very much reflected in the fitness instructor’s approach

to the design and use of the C25K robot coach discussed in Chapters 4 and 5, best summarised by

this particular quote from the fitness instructor’s session notes presented in Appendix D:

“Pepper’s suggestions might not be what *I* would say in that exact same situation, however it

doesn’t mean that what was said or suggested was ’wrong’"

and in his description of Pepper as a colleague, with ‘her own’ personality (from Chapter 5):

‘It was definitely more of a colleague than a tool... I like to think her maybe early bugs or quirks

definitely gave her a bit more of a personality that maybe I held on to. And obviously each of the

clients would interact with her differently, which also gave her sort of more of a personality."

Together then, this work shows (i) how, at an early design/research stage qualitative studies

with experts can identify promising research leads and shape a design/research programme and

(ii) for design of a specific SAR, practical co-design sessions ahead of robot deployment, combined

with an IML approach to automation on deployment, allow for expert knowledge to be utilised

through the entire design, development and automation process.

6.2 On the Value of Taking Expert-Informed and Mutual
Shaping Approaches (RQ2)

Does application of expert-informed and mutual shaping approaches approach result in SAR

behaviours that are successfully able to improve user engagement with a task/programme? Where

‘success’ considers multiple contributory factors e.g. acceptability?

The study with therapists presented in Chapter 2 was vital in identifying the importance of

social influence within the context of socially assistive HHI, therefore leading to the successful

demonstration of how social influence and persuasion might usefully inform socially assistive

HRI. Specifically taking a mutual shaping approach to this study further resulted in really

significant insight regarding factors that need to be considered for real world SAR deployment to

be successful, e.g. the extent to which the users’ social circle might support or inhibit their use of

the robot. Given that these factors can only be observed on deployment of a SAR in-the-wild; this

further supports mutual shaping approaches later in the design/development process that allow

for the observation of these effects.

This was demonstrated in real world deployment of the C25K robot coach, which allowed for

observation of how use of the robot shaped and was shaped by its social environment. To this end,
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Chapter 5 discusses interactions between the IML system, the fitness instructor and participants.

Given this work was focused on SARs that would compliment rather than replace expert-led HHI,

the instructor’s interactions with and utilisation of the robot, and emergent behaviours around

that, were of particular interest. The best example of this was the way in which, towards the end

of the study when there was little free time between participants, the instructor started using

the robot to warm-up the next participant whilst he continued to direct the current participant

through stretches. The way he described this in a post-study interview (presented in Chapter

5 in full) further demonstrates how the approach taken successfully delivered on that initial

motivation of wanting to compliment expert-led HHI:

“I could definitely feel, especially when the sessions got busier, runs got longer, I had less time

between each client, being able to sort of work with and interact with Pepper like you know, sort of

dictating or coordinating other tasks while I was busy doing something else. So we could work

together doing separate things but to get more work done."

Participant acceptance of the C25K robot coach and engagement with the exercise programme

seems also to have been positively impacted by them knowing there was an expert involved, with

participants referring to the presence and role of the fitness instructor when discussing their

willingness to work with the robot and motivations for continuing to attend exercise sessions

and complete the programme. The way such experts can directly impact on acceptability is

further discussed under RQ3. This RQ2 is more concerned with demonstrating whether these

approaches would inherently lead to the development of SARs that were more acceptable (even

if participants didn’t know that such an approach had been taken). There are two key findings

that support this notion. First is important insight regarding potential mutual shaping effects

raised during the study with therapists. The therapists specifically highlighted many issues

that need to be considered for broad stakeholder acceptance on real world deployment. These

included issues that non-therapist robotocists would not necessarily have identified, e.g. relating

to how SAR use might impact on or be impacted on by the user’s broader social circle. Second

is the acceptability of the SAR behaviours that were demonstrated in the persuasion studies of

Chapter 3. These behaviours were designed by drawing from HHI literature identified based

on the study with therapists results, as well as being informed by those results directly. When

discussing acceptability of these behaviours, participants made a number of references to them

being ‘equivalent to what a human would do’; further suggesting that SAR behaviours designed

and based on acceptable, human expert behaviours would potentially ‘inherit’ that acceptability.

More generally results regarding SAR acceptability and deception from the persuasion studies

in Chapter 3 demonstrated how perception and acceptance of SAR behaviours is not independent

from their intention, i.e. the overall context in which they are to be used. This would suggest

is it likely impossible to assess acceptability and other perceptions of a SAR (e.g. credibility)

without clearly establishing the context of use. Experimental HRI study design should therefore

ensure participants are made aware of the proposed application, and utilise contextually valid
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interaction scenarios (e.g. improving exercise engagement in this case) before asking them to

complete any perception based measures (including e.g. the Godspeed questionnaire (Bartneck

et al. 2009)). This further demonstrates the need for taking a mutual shaping approach that

accounts for the overall context of proposed robot use.

Finally, the research philosophy provided in the Introduction described a desire to show

how these approaches were not only necessary for acceptability, but were also practically and

technically the ‘right tools for the job’. The co-design and IML approach used to create the C25K

robot coach clearly demonstrates that this is the case. The difficulty in automating complex

SAR behaviours was highlighted in the Introduction, with the only two previous examples of

automated behaviour on SARs for exercise also using expert-informed approaches (Sussenbach

et al. 2014, Martinez-Martin & Cazorla 2019). A number of results demonstrated by the C25K

gym study were only possible because of the approach taken. For example, the robot C25K robot

coach was shown to generate intelligently personalised behaviour across users when operating

autonomously. This reflects how the fitness instructor personalised the robot’s behaviour across

participants during the training phase; which in turn was only possible with the longitudinal,

in-the-wild IML approach employed. Specifically, this approach allowed the instructor to observe

and ‘get to know’ participants, and then to shape and tailor the robot’s behaviour accordingly.

6.3 The Role of Humans in Socially Assistive HRI (RQ3)

Considering a SAR within its broader context of use, what is the role of the human (i) design-

ers/programmers behind its design/development and (ii) expert practitioners working with the

robot ‘in-the-wild’?

The persuasion studies presented in Chapter 3 demonstrated two ways in which humans can

have an impact on SAR credibility and acceptance. Firstly, participants of the lab-based exercise

study referred to the idea that a SAR would be ‘signed off ’, having been designed by relevant

experts and then assessed and found to be safe, ethical etc, by the appropriate (human) authority.

Secondly, results from the online ‘source of expertise’ study demonstrated that having a SAR

explicitly reference an appropriate human authority, when discussing task related expertise,

could have a positive impact on its acceptability and credibility. This seems to be in line with the

concept of inherited credibility in persuasion; whereby credibility of a source can be improved

if that source is introduced or endorsed by someone else who is perceived to be credible. Of

course, it seems obvious that a therapy user is more likely to use a SAR if recommended to do so

by their therapist. Possibly more nuanced however, the study with therapists also highlighted

how other people around the user might influence use and acceptance of a SAR. This is another

reason that a mutual shaping approach which accounts for this larger range of stakeholders, is

so fundamental to successful SAR design.

The impact of explicitly having an expert involved in both the design and use of a SAR was
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very well demonstrated by the C25K gym study. Participants explicitly referred to the fitness

instructor’s presence as giving them confidence to work out with the robot, as they knew a

professional was on hand to ensure they were exercising safely. Further however, his presence

had its own motivational impact, and specifically the results suggest that was in addition to, and

not in any way at the expense of the impact of the robot itself. In discussing the role of the fitness

instructor and the robot coach, participants were able to identify the separate, but complimentary

roles taken by each, and how they both had a positive impact on their motivation.

This might be considered somewhat at odds with traditional HRI studies, in which a lot

of effort is often taken to isolate the robot and participant away from the researchers or other

humans e.g. through the Wizard-of-Oz paradigm (Riek 2012). This may well be necessary and

important for some studies, e.g. when considering applications in which the robot will be working

alone with users or, in this work, when investigating social influencing phenomena associated

with the robot’s presence (the persuasion studies in Chapter 3). However, these results show that,

for SARs, having humans explicitly ‘in the loop’ during research, design and automation, and

around their use on deployment, has a positive impact on the resulting outcomes. Arguably, this

also better reflects how SARs are likely to be used in the real world, compared to those more

traditional lab-based HRI studies that look to shield participants away from ‘the person behind

the robot’.

6.4 Ethical Considerations

This work was not focused on contributing to the fundamental ethical arguments surrounding

SAR use. However, ethical implications were considered, practically, when designing and im-

plementing the demonstrated SAR behaviours. Specifically, it was pointed out that social HRI

behaviours are definitely somewhat at odds with recommendations made by a published standard

on the ethical design of robotic devices (BSI 2016). Mostly, this is because many social HRI

behaviours appear to actively encourage anthropomorphism, and imply social/emotional capa-

bilities that the robot doesn’t actually have. The work in Chapter 3 included some preliminary

studies to investigate whether better compliance with this standard might have an impact on

perception of the robot. The results suggested that in some cases, it might be possible to be more

effective whilst also being more ethical, i.e. by referring to a human third party when it came

to technical/medical expertise). In contrast, specifically for the kind of socially supportive social

behaviours considered by this thesis, there is potentially good reason for the robot to present

itself (anthropomorphically) as a social agent that appears to have concern for your welfare.

This was also found to be overwhelmingly acceptable to participants, and so may represent

one use case for which such behaviours are justified. The standard does acknowledge that such

use cases may exist, and identifies user validation as being one of the mechanisms for assessing

related ethical risk. However, as discussed previously under RQ2, much of this acceptability was

203



CHAPTER 6. CONCLUSION

linked with the specific application for which these behaviours were demonstrated (using a SAR

to promote exercise engagement) and so may not hold for other applications or social HRI more

generally. In addition, two key observations suggest it is important for future work to further

consider whether these types of behaviours have the potential to be exploited in a more unethical

way.

Firstly, participants appeared overwhelmingly undeterred by the potential for social robots to

be deceptive, even when they were specifically primed to consider it (Studies 1 and 3 in Chapter

3). Participants felt very much that they knew the limitations of the robot, and were not in any

way deceived as to its nature. However, the exercise based study in Chapter 3 demonstrated

how manipulation of these behaviours could simultaneously have an objective impact on user

behaviour. This suggests there might be a risk that such behaviours could be used to shape user

behaviour without them realising. Given recent scandals regarding e.g. the use of social media to

shape voting behaviour (Bond et al. 2012) this possibility is deserving of serious consideration in

future work.

6.5 Limitations

A number of assumptions and constraints were identified when setting the scope of this work

in the Introduction. These were deemed necessary to make the overall goal of the thesis, to

demonstrate meaningful, real world deployment of a fully autonomous SAR, feasible in the context

of a PhD research project. These included limiting investigations to one type and application of

SAR, using a single, commercially available robot platform and focusing on the automation of

social behaviour rather than e.g. implementing detailed kinematic assessment of user exercise

performance.

Aside from these, the single biggest limitation of this work, given the focus on mutual shaping

approaches, is the lack of diversity in stakeholder engagement during design and development

work. The focus was very much on expert informed approaches, with little opportunity for users

to be as equally involved. This was partly due to the use cases investigated, specifically whereby

users typically enlist the help of experts because they themselves are struggling to get motivated,

but further iteration e.g. of the C25K coach or development of a SAR for therapy would certainly

warrant more user engagement in design, development and evaluation. This further lends itself

to interesting avenues of future work; particularly regarding the role users might play in IML

approaches to SAR automation. Very recent work has demonstrated that when it comes to

personalising robot behaviour, it is better to have an adaptive robot, that autonomously tries

to adjust to the users preference, rather than an adaptable robot whose behaviour the user

can change directly (Schneider & Kummert 2020). This would suggest that it is better to have

someone other than the user provide training data during IML, but leaves room to explore the

impact of having a peer, e.g. a fellow therapy patient or exercise partner take on this role.
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6.6 Future Work

This work used expert informed approaches to achieve real world deployment of an autonomous

SAR. However, there are a number of variations that could be made to the approaches taken, as

well as ways in which they could be extended to tackle additional complexity not considered in

this work.

6.6.1 Variations on the Expert Role and Learning from the User

This work focused specifically on SARs used to take a somewhat authoritative role in instructing

and encouraging the user through an activity, somewhat akin to the role an equivalent human

authority (e.g. healthcare practitioner) would take. Accordingly, the term expert, in the context

of the expert-informed approaches employed in this work, specifically referred to these human

authority figures (i.e. the therapists in Chapter 2 and the fitness instructor in Chapter 4).

However, key to a mutual shaping approach is the consideration of a variety of stakeholders, all

of whom arguably represent some sort of expert with regards to system design. In the therapy use

case for example, users are experts with regards to the barriers they might face in undertaking

exercise at home, and so should be included in design work, even if overall behaviour design is

primarily driven by the therapists’ expertise. Including them in the automation of such robot

behaviours is likely to be harder, given the authoritative role of the robot. Instead, user feedback

might be incorporated after the SAR has been initially automated via SPARC (Senft et al. 2019),

through reinforcement learning based on user input signals. This could be explicit (with the SAR

asking the user for feedback) or implicit, based on the automatic analysis of user social signals

(e.g. gaze). The latter seems more likely be effective, given the previously highlighted finding

regarding adaptive versus adaptable robots (Schneider & Kummert 2020).

However, as identified in the Introduction, this authoritative role represents only one role

a SAR might take in attempting to influence user behaviour. An alternative, particularly seen

in other works considering SARs for children, is having the robot take the role of a peer, and

potentially even requiring help such that the user actually represents an authority figure who then

has a ‘responsibility’ to demonstrate the desired behaviours (Lemaignan et al. 2016, Cañamero &

Lewis 2016). This opens up the possibility of having a peer, potentially someone who actually

represents a potential user of the system, be the expert e.g. in the expert-in-the-loop, interactive

machine learning (IML) approach used in this work. It may even be that different experts are

used at different stages of the design and automation process. Consider the use of a SAR designed

to aid children newly arrived to the country settle into school and make friends with the existing

class population (Gillet & Leite 2020). It is reasonable to suggest that a teacher, play therapist

or child psychologist might be an appropriate expert to co-design the SAR’s action and input

spaces and then automate the robot via IML. However, should the teaching interface be designed

appropriately, it is also feasible that one of the school children could be invited to automate the
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robot instead. A mutual shaping approach would then look to consider the impact this might

have on that child as well as the children with whom the SAR interacts. For example, it would be

interesting to whether teaching the SAR prosocial behaviours might also impact on their own

prosociality.

6.6.2 Alternative Machine Learning Approaches to Utilise Expert Input

This work specifically employed SPARC (Senft et al. 2019) for automating socially assistive

interaction behaviour for two key reasons, as outlined in Chapter 4. Firstly, it facilitates the

learning of intuitive behaviour and tacit experience that is difficult to verbalise. Secondly, this

learning can be done ‘in-the-wild’ and hence facilitate a mutual shaping approach to SAR

automation. However, there are variations both within SPARC but also other machine learning

options that could also meet one or both of these objectives with varying implications for the

types of robot behaviours that can be automated.

Firstly, the specific KNN algorithm based setup used in this work means that the best possible

outcome for the learning system is to exactly replicate the expert’s supervised use of the system;

i.e. replicating exactly the same use of the action space. If, instead, the algorithm could learn

to replicate and optimise the teacher’s goal rather than their actions; the resultant behaviours

might actually be better than those demonstrated by the expert (Abbeel & Ng 2004). Even in

attempting just to replicate the expert’s actions; the setup in this work was shown to fail in

learning to sometimes do nothing; and so future works might consider how to improve on the

specific setup employed here by better accounting for ‘do nothing’ as an action available to the

learning system.

Another limitation of the demonstrated setup (and reflecting machine learning in robotics

more generally) is that it was focused on one specific functional task, i.e. supporting the Couch

to 5km programme for the robot fitness coach. As such, supporting another (even somewhat

similar) task would require new design of the appropriate task actions (i.e. those relating to

delivery of the prescribed activity). However, as described in Chapter 4 the overall learning

framework was designed to be very generalisable. For example, considering the social supporting

actions specifically (encouragements, jokes, asking how the user is feeling), the abstraction of

specific actions to (action-type, style) pairings means those same pairings could be applied to other

exercise based tasks (including cognitive rather than physical exercises). Similarly, whilst the

input feature space included task specific measures (e.g. heart rate, speed) these also represented

the more abstract features of task engagement and performance respectively, and hence could be

replaced by alternative, equivalent measures for different tasks.

As such, if there was a way to easily implement new task actions; it might be possible to share

the learning of social supporting actions from one activity to another within one SAR system to

result in a multi-functional SAR that could guide users through a range of activities. Very recent

work on Learning from Demonstration (LfD) proposed a framework that might support exactly
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this. Louie & Nejat (2020) successfully demonstrated an LfD setup that allows non-robotocist

care home practitioners to teach a SAR multi-step recreational activities, without the need for

any robotocist involvement, that the SAR can then autonomously deliver to residents. However,

this learning of the task is done offline i.e. ahead of deployment and therefore not including any

robot-user interactions. This means there is (i) less potential to capture ‘in the moment’ intuitive

behaviours and (ii) no ability to reflect mutual shaping effects related to robot deployment and

users’ interactions with the robot.

Bringing this approach together with SPARC would seemingly offer the exciting potential

to (i) have a domain expert teach the robot multiple activities (rather than having one single

task functionality pre-decided and hard-coded before deployment), (ii) utilising the same ma-

chine learning model for social supporting action generation across multiple such activities and

(iii) refining resultant SAR behaviours (initially taught offline as per Louie & Nejat (2020))

through expert-in-the-loop interactive machine learning and feedback (as per SPARC), therefore

supporting the potential for mutual shaping.

6.7 Concluding Summary

This work set out to demonstrate the meaningful, real world deployment of a fully autonomous

SAR developed using mutual shaping and expert-informed approaches. This was successfully

achieved in the deployment of a robot ‘fitness coach’ deployed in a university gym to guide 10

participants through a National Health Service exercise programme. The work undertaken to

achieve this goal resulted in a number of contributions to the field of socially assistive robotics as

well as social HRI more generally, and also built on the very latest work in interactive machine

learning for automating social HRI behaviours. The original contributions of this thesis (with

chapter and relevant publication references) can be summarised as follows:

• A detailed set of generalisable design guidelines for SARs being used to prompt/encourage

engagement with a prescribed task, resulting from a significant study with therapists.

(Chapter 2, Winkle et al. (2018))

• Application of persuasion as a way to model socially assistive HRI, with a series

of studies to test whether persuasion literature can therefore inform SAR design. Re-

sults demonstrate that socially persuasive human-human interaction strategies, if
utilised on a SAR, can objectively increase the persuasive effectiveness of that
SAR, in this case, resulting in participants undertaking an increased number of exercise

repetitions.

(Chapter 3, Winkle, Lemaignan, Caleb-Solly, Leonards, Turton & Bremner (2019))

• Practical consideration of how the above behaviours, as well as others demonstrated in

existing social HRI literature are somewhat at odds with a published standard on the
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ethical design of robots, and a preliminary studies on how designing more ethical
social HRI behaviours might impact on their effectiveness as well as participant
acceptability of such behaviours.

(Chapter 3)

• Technical advancement of state of the art in interactive machine learning, ex-

tending the recent development of Supervised, Progressively Autonomous Control (SPARC,

Senft et al. (2019)) to (i) include user personality data in learning input, to allow for per-

sonalisation of robot behaviour and (ii) generate low-level robot ‘mood’ as well as robot

actions. Successful deployment of a SAR, trained and automated using this approach, in a

meaningful, longitudinal study ‘in-the-wild’.

(Chapter 4, to appear at Robotics: Science and Systems 2020)

• Practical demonstration of how expert-informed and mutual shaping approaches
can be taken throughout the SAR design, development and evaluation process; including

development of a novel focus group methodology to support this, and results to demon-

strate why such an approach is worth taking.

(Chapter 5, Winkle, Caleb-Solly, Turton & Bremner (2019))

It is further hoped that the work presented in this thesis presents a positive case for what

can be achieved in interdisciplinary research projects, demonstrating how technical work can be

so much improved through combination with e.g. qualitative design studies and experimental

measures, as well as the benefits of pursuing a responsible innovation approach.
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This appendix contains the following resources from the study with therapists as referred to in

Chapter 2:

• focus group topic guide

• acceptance measure administered before and after focus groups (the before questionnaire

specifically presented here, showing additional images and a definition of social robots not

repeated on the after questionnaire)

• interview topic guide

• full coding scheme as applied to focus group transcripts

• full coding scheme as applied to interview transcripts

209



Learning How to Help: Social Robots in Therapy (Part 1: Study with Therapists) 

Focus Group Study 

Before the Focus  
Group Session 

Information sheet 
Consent form 
Demographics/therapist information collection 
Acceptance measure  

On the Day 
[Approx 1 hr] 

Room Setup 

• AV Equipment for presentation 

• Group seating 

• Audio recording equipment 

• Water / tea / coffee facilities 

Welcome & Introduction [5 mins] 
Welcome and explain that ‘we are going to start the focus group by 
discussing some aspects of therapy that I am interested in. Later we will take 
a break I will talk a bit more about the work I am doing but I want to get your 
views on a few things before we talk too much about that’.   
Housekeeping: 

• Collect signed consent forms 

• Name labels 

• Make participants aware when turning on audio equipment (and 
hence withdrawal issue) 

Pre-Demo Discussion [30 mins] 
Topic Guide: 

• Round the group introductions – name and area(s) worked in/typical 
service user(s) worked with 

• [Expert establishment] ‘What are your main goals when working with 
service users?’  

• [Robot images on screen] Use of robots in supporting a therapy 
program – ‘What do you think about using robots to support a 
therapy program? How do you think that robots might be able to do 
that?’  

• Self-practice as part of a therapy regime – ‘Do you prescribe self-
directed exercises/tasks for your service users to complete at home? 
What might these be? What is the importance of such exercises?’   

• Reporting of self-practice – ‘Do you ask service users to report back or 
keep a record of self-practice? Do you think this is accurate?’ 

• Engagement and motivation – ‘How do you monitor service users’ 
engagement? Do you often find yourself trying to motivate service 
users? How might you try to do that?’ 

• [Post it note exercise] Factors affecting compliance with self-practice 
– ‘What kind of factors do you think affect service users’ compliance 
with self-practice exercises? The literature suggests… (on screen) Use 
the post it notes to rank these, as well as come up with any additional 
factors you can think of.’  

Project Presentation & Demo [20 mins] 



[1] Exercise Based 
Pepper guides user through 

repetitions of a simple arm exercise.  

[2] Task Based 
Pepper prompts user through a 

sequence based task e.g. making a 
cup of tea or preparing a microwave 

ready meal.  
Post-Demo Discussion [10 mins] 
Topic Guide: 

• Demo feedback – ‘Firstly I would like to get your feedback on the 
demos – these are really my first attempt at what a robot coach 
might look like. What do you think? How would you have done it 
differently?’ 

• Revisit use of robots in supporting a therapy program – ‘Now that 
you have seen the demonstrations, I’d like to discuss again your 
thoughts on using robots in therapy and how that might be 
beneficial. What would a robot aid look like, how could it help? 

•  Useful data that could be collected by the robot for use by the 
therapist – ‘Using a robot as well as other sensor systems it is possible 
to collect a huge range of data from the service user. Thinking about 
the measures you might use to monitor service user progress, what 
information is likely to be most useful to you?’ 

Thank you/Debrief 
Housekeeping: 

• Acceptance measure 

• Interview scheduling/reminders(?) 
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Social Robot Questionnaire 1 

Project Title: Learning How to Help: Social Robots in Therapy 
Study: Study with Therapists 
 
 
Name:  ……………………………………………………………………………………………………………………….. 
 
Social robots are those that can take part in social interactions with humans. They might 
exhibit human-social characteristics such as expressing and perceiving emotions, making 
conversation, establishing/maintaining social relationships, using natural cues (e.g. gaze, 

gesturing) and exhibiting a personality/character [1]. Social robots might be 
humanoid/resemble some human characteristics but this is not always the case. A range of 
social robots are shown below to demonstrate this. 
 
 
[1] Fong, T., Nourbakhsh, I. and Dautenhahn, K., 2003. A survey of socially interactive robots. Robotics and 
autonomous systems, 42(3), pp.143-166. 

 
 

 
Figure 1: A selection of social robots 

Please indicate how much you agree or disagree with the following statements by ticking the 
appropriate boxes which are ordered from strongly disagree to strongly agree with neither 
agree nor disagree in the middle: 
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I feel apprehensive about the use of social robots in therapy      

Social robots are somewhat intimidating to me      

I think social robots might be somewhat intimidating to 

service users 

     

I think using social robots in therapy is a good idea      

I think using social robots would make therapy more 

engaging for the service user 

     

A social robot would be useful in supporting a therapy 

programme 

     

I think that use of a social robot could improve the positive 

outcomes/success of a therapy programme 

     

 
A social robot would be most useful (please choose one): 
 
When I am working with service users  

 

OR 
 

When service users are working alone 



Interview Topic Guide 

Set-up Reminder consent form already signed 

Audio recording equipment 

Whiteboard/Flipchart paper & pens 

DoH Segmentation Model information sheets 

Introduction • Reminder that already signed consent form 

• Have a copy of the information sheet here just in case 

• Reminder of recording and withdrawal rights as per information 

sheet 

Introduce Service Users The two service users you’ve got in mind – let’s assign them a 

pseudonym each. Can you describe them to me?  

 

Behaviour Differences 

 

(Use whiteboard or pen 

and paper to write these 

down) 

So thinking about those two service users, what would you say is similar 

about them? And what is different? 

 

When thinking about service users that you work with differently or take 

different approaches with, what made you choose these two in 

particular?  

 

So can you describe to be the differences in how you work with X and Y? 

Why do you take those different approaches?  

 

Behaviour Differences 

cont. & Knowledge of 

the Service User 

 

(Use whiteboard or pen 

and paper to write down 

the categories and 

descriptors for each) 

It seems therapists recognise that different people work in different 

ways and so I would like to explore whether we can sort of group people 

in some general categories based on that. The closest thing I could find in 

the literature was some research done by the Department of Health 

around motivation to lead a healthy lifestyle. You can see they came up 

with five categories and they came up with a persona and some key 

traits for each. (show example & explain)  

 

Do you think you could place X and Y into one of these categories? 

 

What do you think of using these to categorise therapy users? What 

categories would you have?  

 

What descriptors would you use? 

 

(after initial free discussion put up prompts from literature & focus 

groups) 

 

Building on that a little bit more, how long would you say it takes for you 

to get to know a service user and to figure out the best approach to take 

with them? What kind of things might you like to know about them in 



order to help with that? Do you use any particular tools or techniques for 

that? 

 

Finally, thinking about each of these categories, and back to what we 

discussed about your different approaches with X and Y, could you give 

any particular approaches or ideas of what might work better for people 

in these categories?  

 

Feedback (Something about having a couple of more general questions) 

How do you utilise feedback during a therapy session?  

 

What might trigger you to give some feedback? 

 

Progress Focus group discussions have suggested that motivation might be linked 

to the service users’ progress and perhaps reminding them of that. I’ve 

also heard a lot about goal setting, so I’d just like to ask how you 

approach something like that with somebody who has a long term 

condition or progressive illness? 

 



Focus Group Coding  Scheme 

 

First Level Coding Scheme. Those marked* have second level codes presented below: 

Code Description 
[A] Application of Robots in Therapy Direct suggestions or inferred applications/ 

functionalities of SARs in therapy (in post-demo 
discussion) 

[A] Therapist Opinion of Social Robots Any feedback on social robots or their use in therapy – 
could be appearance, functionality etc. from the 
therapists’ point of view (in post-demo discussion) 

[A] User Opinion of Social Robots As above but with therapist referencing user response 
[B] Application of Robots in Therapy Direct suggestions or inferred applications/ 

functionalities of SARs in therapy (in pre-demo 
discussion) 

[B] Therapist Opinion of Social Robots Any feedback on social robots or their use in therapy – 
could be appearance, functionality etc. from the 
therapists’ point of view (in pre-demo discussion) 

[B] User Opinion of Social Robots As above but with therapist referencing user response 
Demo Feedback Feedback on any aspect of the robot demonstrations 

Factors relating to engagement Anything about the factors which impact on adherence, 
including which factors are most important (e.g. around 
the ranking exercise) 

Importance of self-practice Any reflections on how important such exercises are to 
the overall therapy programme 

Measuring motivation or engagement Measures or indicators of how motivated/engaged a 
service user is 

Mutual/ Social Shaping Comments regarding societal influences in therapy, or 
issues likely to impact on real-world SAR deployment in 
therapy 

Personalised Approaches Comments regarding how therapy delivery or therapist 
approach might be adapted or personalised based on the 
service user 

Prescription of Self-Practice Anything describing the prescription of or detail about 
the type of self-practice exercises given to service users 

Reporting of Self-Practice Anything about whether the therapist monitors self-
practice, or ways in which it might be measured 

Robot Requirements Anything around perceived difficulties the robot might 
face or useful references to what sensor/data collection 
capabilities might be required 

Therapist Behaviour or Role Anything about how the therapist might have an impact 
on motivation or engagement i.e. through taking a 
particular approach or adjusting their behaviour 

 

Second Level Coding Nodes. Those marked^ have third level codes presented below: 

First Level/ ‘Parent’ Code Second Level/ ‘Child’ Codes 

[A/B] Application of Robots in Therapy Calming or anxiety 
Demonstrating or showing task 



Engagement in therapy^ 
Interpretation and Translation 
Medication 
Tele-operation 
Therapist or other feedback^ 
Therapist or other training 
User feedback 

[A/B] Therapist Opinion of Social 
Robots 

Positive 
Negative 

[A/B] User Opinion of Social Robots Positive 
Negative 

Factors relating to engagement Cognition 
Demographics 
Dynamic & individual 
Ease of access 
Enjoyment 
External feedback / encouragement / information^ 
Memory 
Mental health 
Mood & emotional state 
Routine 
Self-efficacy & expectations & ownership 
Severity of ailment 
Social^ 

Therapist Behaviour or Role Boosting intrinsic motivation^ 
Feedback^ 
Make sessions enjoyable 
Observe & react to patient 
Persuasion & social influence / social interaction^ 
Scheduling 

 

Third Level Coding Nodes: 

First Level/ ‘Parent’ Code 

Second Level/ ‘Child’ Code Third Level/ ‘Grandchild’ Codes 

[A/B] Application of Robots in Therapy 

Engagement in therapy Improving task value 
Prompting and facilitating 
Robot as third party 
Robot influence 

Therapist or other feedback Accurate reporting 
Quality/ ability of patient activity 
Useful data 

Factors relating to engagement 

External feedback / encouragement / 
information 

Progress based 
Effort based/ encouragement 
Functional/ medical purpose/ understanding 

Social Social influence/ pressure 
Social support 

Therapist Behaviour or Role 



Boosting intrinsic motivation Frame in term of functional goals 
Functional/ intrinsic motivators 
Improve patient understanding 

Feedback Effort based 
Feedback based 

Persuasion & social influence / social 
interaction 

`Cajoling’ & accountability 
Expert support 
Interaction 

 



Interview Coding Scheme 

 

First Level Nodes Second Level Nodes (if any) 
Motivation strategy  

Personalised approaches  

Engagement factors Functional goal 
Expectations 
Financial issues 
Social support 

Description of the user  
Giving feedback  

Thoughts on NHS framework  

Instantaneous data/patient indicators Self-assessment 
Performance; effort 
Bodily cues 
Pain; fatigue 
Symptoms 
Vitals 
Timing 
Enjoyment 

Social shaping  

Thoughts on general categorisation  

Link to robot  

Measuring motivation/engamgent  
Tools for knowing patient and personalisation  

Progress markers  

Excuses for low engagement  
Possible robot actions/functionalities  

Considerations for categorisation  
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APPENDIX B

This appendix contains the following resources from the persuasion studies as referred to in

Chapter 3:

• study 1 experimental measures in full

• study 2 experimental measures in full
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Study 1 Experimental Measures in Full 

After each interaction 

Perceived Credibility [1]: 

Please rate your impression of the robot on these scales: 

Expertise 

Unexperienced  1 2 3 4 5 Experienced 
Uninformed  1 2 3 4 5 Informed 

Untrained 1 2 3 4 5 Trained 

Unqualified 1 2 3 4 5 Qualified 
Unskilled 1 2 3 4 5 Skilled 

Unintelligent 1 2 3 4 5 Intelligent 

Incompetent 1 2 3 4 5 Incompetent 

Stupid 1 2 3 4 5 Bright 

 

Trustworthiness  

Dishonest 1 2 3 4 5 Honest 

Untrustworthy 1 2 3 4 5 Trustworthy 

Close-minded 1 2 3 4 5 Open-minded 

Unjust 1 2 3 4 5 Just 

Unfair 1 2 3 4 5 Fair 

Selfish 1 2 3 4 5 Unselfish 
Immoral 1 2 3 4 5 Moral 

Unethical 1 2 3 4 5 Ethical 

Phony 1 2 3 4 5 Genuine 

 

Goodwill  

Doesn’t care about me 1 2 3 4 5 Cares about me 

Doesn’t have my interests at 
heart 

1 2 3 4 5 Has my interests at heart 

Self-centred 1 2 3 4 5 Not self-centred 

Not concerned with me 1 2 3 4 5 Concerned with me 

Insensitive 1 2 3 4 5 Sensitive 

Not understanding 1 2 3 4 5 Understanding 

 

Extroversion  

Timid 1 2 3 4 5 Bold 

Quiet 1 2 3 4 5 Verbal 

Meek 1 2 3 4 5 Aggressive 
Silent 1 2 3 4 5 Talkative 

 

Composure  



Poised 1 2 3 4 5 Nervous 
Relaxed 1 2 3 4 5 Tense 

Calm 1 2 3 4 5 Anxious 

Composed 1 2 3 4 5 Excitable 

 

Sociability  

Good-natured 1 2 3 4 5 Irritable 

Cheerful 1 2 3 4 5 Gloomy 

Friendly 1 2 3 4 5 Unfriendly 

 

Perceptions of the robot [2]: 

Please rate your impression of the robot on these scales: 

Anthropomorphism: 

Fake 1 2 3 4 5 Natural 

Machinelike 1 2 3 4 5 Humanlike 

Unconscious 1 2 3 4 5 Conscious 

Artificial 1 2 3 4 5 Lifelike 
Moving rigidly 1 2 3 4 5 Moving elegantly 

 

Animation: 

Dead 1 2 3 4 5 Alive 

Stagnant 1 2 3 4 5 Lively 
Mechanical 1 2 3 4 5 Organic 

Inert 1 2 3 4 5 Interactive 

 

Likeability: 

Dislike 1 2 3 4 5 Like 
Unfriendly 1 2 3 4 5 Friendly 

Unkind 1 2 3 4 5 Kind 

Unpleasant 1 2 3 4 5 Pleasant 

Awful 1 2 3 4 5 Nice 

 

Perceived Safety: 

Please rate your emotional state on these scales: 

Anxious 1 2 3 4 5 Relaxed 

Calm 1 2 3 4 5 Agitated 

Quiescent 1 2 3 4 5 Surprised 

 

Questions: 



• To what extent do you feel that you developed a relationship with the robot? (not at all / not 
much / not sure / a bit / a lot) [3] 

• To what extent do you feel that the robot developed a relationship with you? (not at all / not 
much / not sure / a bit / a lot) [3] 

Imagine you were undergoing a therapy regime where you had to do exercises like this every day, 

and you had this robot at home to help you in-between visits from your therapist: 

• On a scale of 1 (low) to 5 (high) how much responsibility do you think your therapist would 

hold for monitoring your engagement with your exercises? 

• On a scale of 1 (low) to 5 (high) how much responsibility do you think this robot would hold 

for monitoring your engagement with your exercises? 

• On a scale of 1 (low) to 5 (high) how much responsibility do you think your therapist would 

hold for giving you advice about your symptoms and the exercises you do at home? 

• On a scale of 1 (low) to 5 (high) how much responsibility do you this robot would hold for 

giving you advice about your symptoms and the exercises you do at home? 

 

Additional questions after seeing both robots 

• Which robot do you think was the most motivating, and why? (robot 1 / robot 2) 

• Which robot would you prefer to work with and why? (robot 1 / robot 2) 

In the goodwill / similarity conditions: 

• The main difference between the two robots you saw was that robot (1/2) was programmed 
to demonstrate (more goodwill / more expertise/ some similarity with you). There is some 
concern that these and other human-like social behaviours may be deceptive. For example, 
such robots do not and cannot feel emotions, nor do they have any real interest in the 
person they are interacting with. Do you feel that either of the robots you saw today were 
deceptive? (if so) Why? Would you be happy for the robot to act in the ways you saw today? 

[1] R. H. Gass and J. S. Seiter, Persuasion: Social Influence and Compliance Gaining. Routledge, 2015. 

[2] C. Bartneck, D. Kulić, E. Croft, and S. Zoghbi, “Measurement instruments for the 

anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots,” 

International journal of social robotics, vol. 1, no. 1, pp. 71–81, 2009. 

[3] J. Hall, T. Tritton, A. Rowe, A. Pipe, C. Melhuish, and U. Leonards, ‘Perception of own and robot 

engagement in human–robot interactions and their dependence on robotics knowledge’, Robotics 

and Autonomous Systems, vol. 62, no. 3, pp. 392–399, Mar. 2014. 



Study 2 and 3 Experimental Measures in Full 
 

After each video 

Perceived Credibility [1]: 

Please rate your impression of the robot on these scales: 

Expertise 

Unexperienced  1 2 3 4 5 Experienced 

Uninformed  1 2 3 4 5 Informed 

Untrained 1 2 3 4 5 Trained 
Unqualified 1 2 3 4 5 Qualified 

Unskilled 1 2 3 4 5 Skilled 

Unintelligent 1 2 3 4 5 Intelligent 

Incompetent 1 2 3 4 5 Incompetent 

Stupid 1 2 3 4 5 Bright 

 

Trustworthiness  

Dishonest 1 2 3 4 5 Honest 

Untrustworthy 1 2 3 4 5 Trustworthy 

Close-minded 1 2 3 4 5 Open-minded 

Unjust 1 2 3 4 5 Just 

Unfair 1 2 3 4 5 Fair 
Selfish 1 2 3 4 5 Unselfish 

Immoral 1 2 3 4 5 Moral 

Unethical 1 2 3 4 5 Ethical 

Phony 1 2 3 4 5 Genuine 

 

Goodwill  

Doesn’t care about me 1 2 3 4 5 Cares about me 

Doesn’t have my interests at 
heart 

1 2 3 4 5 Has my interests at heart 

Self-centred 1 2 3 4 5 Not self-centred 

Not concerned with me 1 2 3 4 5 Concerned with me 

Insensitive 1 2 3 4 5 Sensitive 
Not understanding 1 2 3 4 5 Understanding 

 

Extroversion  

Timid 1 2 3 4 5 Bold 

Quiet 1 2 3 4 5 Verbal 
Meek 1 2 3 4 5 Aggressive 

Silent 1 2 3 4 5 Talkative 

 

Composure  



Poised 1 2 3 4 5 Nervous 
Relaxed 1 2 3 4 5 Tense 

Calm 1 2 3 4 5 Anxious 

Composed 1 2 3 4 5 Excitable 

 

Sociability  

Good-natured 1 2 3 4 5 Irritable 

Cheerful 1 2 3 4 5 Gloomy 

Friendly 1 2 3 4 5 Unfriendly 

 

Perceptions of the robot [2]: 

Please rate your impression of the robot on these scales: 

Anthropomorphism: 

Fake 1 2 3 4 5 Natural 

Machinelike 1 2 3 4 5 Humanlike 

Unconscious 1 2 3 4 5 Conscious 

Artificial 1 2 3 4 5 Lifelike 
Moving rigidly 1 2 3 4 5 Moving elegantly 

 

Animation: 

Dead 1 2 3 4 5 Alive 

Stagnant 1 2 3 4 5 Lively 
Mechanical 1 2 3 4 5 Organic 

Inert 1 2 3 4 5 Interactive 

 

Likeability: 

Dislike 1 2 3 4 5 Like 
Unfriendly 1 2 3 4 5 Friendly 

Unkind 1 2 3 4 5 Kind 

Unpleasant 1 2 3 4 5 Pleasant 

Awful 1 2 3 4 5 Nice 

 

Perceived Intelligence:  

Incompetent 1 2 3 4 5 Competent 

Ignorant 1 2 3 4 5 Knowledgeable 

Irresponsible 1 2 3 4 5 Responsible 
Unintelligent 1 2 3 4 5 Intelligent 

Foolish 1 2 3 4 5 Sensible 

 

Perceived Safety: 

Please rate your emotional state on these scales: 



Anxious 1 2 3 4 5 Relaxed 
Calm 1 2 3 4 5 Agitated 

Quiescent 1 2 3 4 5 Surprised 

 

Questions: 

• To what extent do you feel the patient developed a relationship with the robot? (not at all / 
not much / not sure / a bit / a lot) (adapted from [3]) 

• To what extent do you feel the robot developed a relationship with the patient? (not at all / 
not much / not sure / a bit / a lot) (adapted from [3]) 

• Who do you think is responsible for monitoring [actor name]’s engagement with her home 

exercises? (the robot / [actor name] / the therapist / other + blank) 

• Who do you think is responsible for giving [actor name] advice about the exercises she does 

at home? (the robot / the therapist / other + blank) 

• How would you describe the role and responsibilities of the robot shown in the video? (free 

space) 

Once all videos have been watched 

• Which robot do you think was the most motivating, and why? (free space) 

• Which robot would you prefer to work with and why? (free space) 

• Repeat of negative attitude to robots scale as administered in pre-study demographics and 

presented in ‘Demographics’ 

In Study 1 (Expertise) only: 

• The robot told [actor name] lots of medical information about her injury, where did that 

information come from? (The robot / [actor name]’s therapist / the people who designed 

and programmed the robot / other + free space) 

In Study 2 (Sociability) only: 

• Having watched all of the videos, do you think any of the robots were deceptive? If so, 

please give details on which robot(s) and why. (free space)  

After debrief 

• Having read the debrief, do you have any more thoughts or comments you would like to 

add? Do you think any of your previous answers would change now, based on the debrief 

information? (free space) 

 

[1] R. H. Gass and J. S. Seiter, Persuasion: Social Influence and Compliance Gaining. Routledge, 2015. 

[2] C. Bartneck, D. Kulić, E. Croft, and S. Zoghbi, “Measurement instruments for the 

anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots,” 

International journal of social robotics, vol. 1, no. 1, pp. 71–81, 2009. 

[3] J. Hall, T. Tritton, A. Rowe, A. Pipe, C. Melhuish, and U. Leonards, ‘Perception of own and robot 

engagement in human–robot interactions and their dependence on robotics knowledge’, Robotics 

and Autonomous Systems, vol. 62, no. 3, pp. 392–399, Mar. 2014. 
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APPENDIX C

This appendix contains the following resources from the study with therapists as referred to in

Chapter 4:

• information sheet included with advertisements for the Couch to 5km gym study

• post-session participant questionnaire

• weekly participant journal

• within-subject questionnaire implemented at the end of Phase 1

• within-subject questionnaire implemented at the end of the study

• examples of notes taken by the fitness instructor during the exercise sessions
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Study Information Sheet  
 

Study Title: Training a Robot Coach  
Date: Summer 2019 

Contact Address: Katie Winkle, Bristol Robotics Laboratory, University of the West of England, 
Coldharbour Lane, Bristol, BS16 1QY.   
Email: k.winkle@bristol.ac.uk 

  
Thank you for taking the time to consider participating in my research project. This information 
sheet gives an overview of the proposed work. If you decide to take part, you will give more 
information on exactly how the study will run.  
  

Who is doing the work?  
Katie Winkle, PhD student based at the Bristol Robotics Laboratory, University of the West of 
England.  
 

What is the project and study for?  
This study is part of PhD research aiming to design a social robot to function as a coach for guiding 
therapeutic exercises.  The aim of this study is to have a human expert (e.g. physiotherapist or 
personal trainer) train the robot using supervised machine learning. Further, we wish to explore 
whether such an approach (and the resulting robot system) might be a useful tool – i.e. how people 
feel about, and their experience of, working with such a robot throughout a real-world, long-term 
exercise programme.  
 

Who are we looking for? 
We invite participants who meet the following criteria: 

• 18 years old or over 

• No health conditions preventing safe engagement with the NHS Couch to 5K programme 

• Fluent in English  

• Not currently running often 
 

We are looking to recruit people who would like to take up running as a form of exercise – and 
would be interested in following an NHS-designed running plan, ‘Couch to 5K’ to do so. Your current 
fitness or running experience is not important so long as you do not frequently run already and are 
in general good health with no medical conditions which might prevent you safely taking part in the 
programme. The following guidance is taken from the NHS Couch to 5K website: 
 
Who is Couch to 5K for? 
Couch to 5K is for everyone. Whether you've never run before or if you just want to get more active, 
Couch to 5K is a free and easy way of getting fitter and healthier. If you have any health concerns 
about beginning an exercise regime like Couch to 5K, make an appointment to see your GP and 
discuss it with them first. 
 

What does the study involve? 

You will be invited to complete 9 week the Couch to 5K programme, attending 3x weekly exercise 
sessions at Wallscourt Farm Gym, Frenchay Campus. During these sessions you will be accompanied 
by the social robot Pepper and supervised by a qualified fitness instructor. The role of the fitness 
instructor will be to observe your interaction with the robot and generate training data for 
improving its behaviour. You are free to miss, rearrange or stop attending exercise sessions at any 
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time during the 9 week programme. Additionally you can stop or take a break at any time during an 
exercise session. 
 
During the first few weeks of the study, you will have the chance to test out a few different versions 
of the robot. Throughout the study, we will ask you to complete a brief weekly journal documenting 
your experiences of undertaking the programme and working with the robot. 
 
Before starting the study you will have the chance to meet the fitness instructor and go through the 
proposed exercise programme in detail. The following information is taken from the Couch to 5K 
website. Please note that whilst Couch to 5K is an NHS designed programme, this research is not 
being carried out in direct collaboration with the NHS. 
 
What is Couch to 5K? 
Couch to 5K is a running plan for absolute beginners. It was developed by a new runner, Josh Clark, 
who wanted to help his 50-something mum get off the couch and start running, too. The plan 
involves 3 runs a week, with a day of rest in between, and a different schedule for each of the 9 
weeks. 
 
How does Couch to 5K work? 
Probably the biggest challenge a new runner faces is not knowing how or where to start. Often when 
trying to get into exercise, we can overdo it, feel defeated and give up when we're just getting 
started. Couch to 5K works because it starts with a mix of running and walking to gradually build up 
your fitness and stamina. Week 1 involves running for just a minute at a time, creating realistic 
expectations and making the challenge feel achievable right from the start. 
 

Contacts 
If you have any questions about the topic of this research, or taking part in this study then please 
contact the researcher Katie Winkle (k.winkle@bristol.ac.uk) or project supervisor Paul Bremner 
(paul.bremner@brl.ac.uk).  



Participant Post-Session Questionnaire 

UserID:  
 

Session: 
 

Robot Version:  

 

How did you find today’s session? (Please tick the appropriate box) 

   
   

 

How would you rate the robot as an exercise instructor based on today’s session? 

   
   

 

Any thoughts or comments? 

 



 

 



‘Participant Weekly Journal 

User ID: 
 

Week: 

 

Please reflect on your experience of the Couch to 5km and working with the robot/different robot 

versions this week. How do you feel about the exercise programme? What are your thoughts on the 

robot as an exercise instructor and companion?  
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Intro

Over the last eight sessions you have worked out with two different versions of
Pepper - Robot A (Orange) and  Robot B (Purple). This questionnaire is designed to
explore any differences in your perception of these robots and your experiences of
working with them.

Block 4

Please enter your programme User ID (your initials): 

Robot A: Orange

Please think about your experiences with Robot A (Orange) when answering these
questions:
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As an exercise instructor, did you find Robot A (Orange) to be:

Unexperienced   Experienced
 



20/05/2020 Qualtrics Survey Software

https://bristolexppsych.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_brxwJrSJQXeXT… 3/8

Did you feel that Robot A (Orange):

Did you find Robot A (Orange) to be:

Please rate your impression of Robot A (Orange) on the following scales:

Please indicate your response to the following questions:

Uninformed Informed

Untrained   Trained

Unqualified   Qualified

Unskilled   Skilled

Unintelligent   Intelligent

Incompetent   Competent

Stupid   Bright

Didn't care about me   Cared about me

Didn't have my interests at heart   Had my interests at heart

Was self-centred   Was not self-centred

Was not concerned with me   Was concerned with me

Was insensitive   Was sensitive

Was not understanding   Was understanding

Irritable   Good-natured

Gloomy   Cheerful

Unfriendly   Friendly

Dislike   Like

Unfriendly   Friendly

Unkind   Kind

Unpleasant   Pleasant

Awful   Nice

     Not at all Not much Not sure A bit A lot

To what extent do you
feel you developed a
relationship with
Robot A (Orange)?
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Robot B: Purple

Please think about your experiences with Robot B (Purple) when answering these
questions:
 

 

     Not at all Not much Not sure A bit A lot

To what extent do you
feel Robot A (Orange)
developed a
relationship with you?
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As an exercise instructor, did you find Robot B (Purple) to be:

Unexperienced   Experienced
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Did you feel that Robot B (Purple):

Did you find Robot B (Purple) to be:

Please rate your impression of Robot B (Purple) on the following scales:

Please indicate your response to the following questions:

Uninformed Informed

Untrained   Trained

Unqualified   Qualified

Unskilled   Skilled

Unintelligent   Intelligent

Incompetent   Competent

Stupid   Bright

Didn't care about me   Cared about me

Didn't have my interests at heart   Had my interests at heart

Was self-centred   Was not self-centred

Was not concerned with me   Was concerned with me

Was insensitive   Was sensitive

Was not understanding   Was understanding

Irritable   Good-natured

Gloomy   Cheerful

Unfriendly   Friendly

Dislike   Like

Unfriendly   Friendly

Unkind   Kind

Unpleasant   Pleasant

Awful   Nice

     Not at all Not much Not sure A bit A lot

To what extent do you
feel you developed a
relationship with
Robot B (Purple)?
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Robot A: Orange versus Robot B: Purple

Now thinking about comparing the two robots:

How would you describe Robot A (Orange) and Robot B (Purple)  as exercise
instructors? What differences, if any, did you perceive between them?
 

Do you feel that one of the robots encouraged you to perform better than the other?

Did you prefer working with one robot over the other?

If you could choose to work with one robot or the other for the remainder of the
programme, would you have a preference? Please explain your reasoning.

     Not at all Not much Not sure A bit A lot

To what extent do you
feel Robot B (Purple)
developed a
relationship with you?

  

Robot A (Orange)

Robot B (Purple)

No preference

Robot A (Orange)

Robot B (Purple)

No preference

Robot A (Orange)

Robot B (Purple)

No preference
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Powered by Qualtrics

Please feel free (but not obliged) to leave any additional thoughts or comments here:
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Intro

In this study we've been working with two different versions of Pepper. Half of our
participants (including yourself) have been seeing the Purple robot, whereas the other
half have been seeing the Orange one. Now that we're near the end of the study we
wanted to show everyone both robots again for a final comparison. You should have
just completed a session with the Orange robot. This questionnaire is designed to
explore any differences in your perception of the two robots and your experiences of
working with them. In addition, there are some final questions about your overall
experience of taking part in this study.

Block 4

Please enter your programme User ID (your initials): 

Robot A: Orange

Please think about your experiences with the Orange robot when answering these
questions:
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As an exercise instructor, did you find the Orange robot to be:

Unexperienced   Experienced
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Did you feel that the Orange robot:

Did you find the Orange robot to be:

Please rate your impression of the Orange robot on the following scales:

Please indicate your response to the following questions. 
Over the course of this study, based on the time you've actually spent with the Orange
robot:

Uninformed Informed

Untrained   Trained

Unqualified   Qualified

Unskilled   Skilled

Unintelligent   Intelligent

Incompetent   Competent

Stupid   Bright

Didn't care about me   Cared about me

Didn't have my interests at heart   Had my interests at heart

Was self-centred   Was not self-centred

Was not concerned with me   Was concerned with me

Was insensitive   Was sensitive

Was not understanding   Was understanding

Irritable   Good-natured

Gloomy   Cheerful

Unfriendly   Friendly

Dislike   Like

Unfriendly   Friendly

Unkind   Kind

Unpleasant   Pleasant

Awful   Nice

     Not at all Not much Not sure A bit A lot
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Now hypothetically, if you were to work out with the Orange robot for a longer period,
like you have been doing with the Purple robot:

On seeing the Orange robot again for the first time in a while, do you feel its behaviour
has changed since you saw it last? If so please give details on what differences you
perceive and whether they might be positive/negative. 

Robot B: Purple

Please think about your experiences with the Purple robot when answering these
questions:
 

     Not at all Not much Not sure A bit A lot

To what extent do you
feel you developed a
relationship with the
Orange robot?

  

To what extent do you
feel the Orange robot
developed a
relationship with you?

  

     Not at all Not much Not sure A bit A lot

To what extent do you
feel you could
develop a relationship
with the Orange
robot?

  

To what extent do you
feel the Orange robot
could develop a
relationship with you?

  

Yes

No

Not Sure
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As an exercise instructor, did you find the Purple robot to be:

Unexperienced   Experienced
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Did you feel that the Purple robot:

Did you find the Purple robot to be:

Please rate your impression of the Purple robot on the following scales:

Please indicate your response to the following questions:

Uninformed Informed

Untrained   Trained

Unqualified   Qualified

Unskilled   Skilled

Unintelligent   Intelligent

Incompetent   Competent

Stupid   Bright

Didn't care about me   Cared about me

Didn't have my interests at heart   Had my interests at heart

Was self-centred   Was not self-centred

Was not concerned with me   Was concerned with me

Was insensitive   Was sensitive

Was not understanding   Was understanding

Irritable   Good-natured

Gloomy   Cheerful

Unfriendly   Friendly

Dislike   Like

Unfriendly   Friendly

Unkind   Kind

Unpleasant   Pleasant

Awful   Nice

     Not at all Not much Not sure A bit A lot

To what extent do you
feel you developed a
relationship with the
Purple robot?
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Do you feel the Purple robot's behaviour has changed in any way over the course of
the study, while you've been working out with it? If so please give details as to any
changes you have perceived and whether they might be positive/negative. 

Robot A: Orange versus Robot B: Purple

Now thinking about comparing the two robots:

How would you describe the Orange and Purple robots as exercise instructors? What
differences, if any, did you perceive between them?
 

Do you feel that one of the robots encouraged you to perform better than the other?

Did you prefer working with one robot over the other?

     Not at all Not much Not sure A bit A lot

To what extent do you
feel the Purple robot
developed a
relationship with you?

  

Yes

No

Not Sure

Orange

Purple

No preference

Orange

Purple
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If you were to undertake another similar exercise training programme, would you want
to work with a robot like Pepper again? If so, would you have a preference for either
the Orange or the Purple robot? Please leave any related reasoning in the boxes
provided.

Pre-Interview Thoughts

These questions are designed to capture your overall experience of taking part in this
study. If you are willing and able to take part in a post-study interview then we may
refer back to these answers during that interview for further discussion. 

Please briefly summarise your experience of undertaking the Couch to 5km with
Pepper and Don.

How would you describe the role of the robot with regards to the exercise
programme? How does this compare to the role of the instructor (Don) and the
researcher (Katie)? 

How does your experience of this programme and working with Pepper compare to
any other exercise you do or previous exercise programmes you may have
completed? If you ever tried Couch to 5km with the smartphone app/podcast, how
does our robot setup compare for you?

No preference

I'd probably prefer not to work with a robot like this in future

I'd like to work with the Purple robot again

I'd like to work with the Orange robot again

I'm not sure, or have no preference
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Finally, drawing on your experiences during this study, what are your thoughts on
robot-supported exercise like this? For yourself during the programme, but also in the
future or for others.

Please feel free (but not obliged) to leave any additional thoughts or comments here:





A
P

P
E

N
D

I
X

D
APPENDIX D

This appendix contains the following resources from the study with therapists as referred to in

Chapter 5:

• Fisher’s exact test results comparing the action distributions produced by each system,

within-participant

• Fisher’s exact test results comparing the action distributions produced by the first and

second iterations of the Heuristic system, between-participant

• Fitness instructor’s in-session notes from Phase 1 and Phase 3 testing of the Heuristic

system

• Participant responses to the question regarding the role of the robot, fitness instructor and

researcher

• Participant responses to the question regarding differences between the Heuristic and IML

robots
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H1 IML-S2 H2 IML-A

LB

IML-S1 p <<0.001 p = 0.704 p <<0.001 p = 0.106
H1 x p <<0.001 p <<0.001 p <<0.001
IMLS-2 x x p <<0.001 p = 0.803
H2 x x x p <<0.001

FB

IML-S1 p <<0.001 p = 0.654 p <<0.001 p = 0.001
H1 x p <<0.001 p <<0.001 p <<0.001
IMLS-2 x x p <<0.001 p = 0.029
H2 x x x p <<0.001

DB

IML-S1 p <<0.001 p = 0.342 p <<0.001 p = 0.397
H1 x p <<0.001 p <<0.001 p <<0.001
IMLS-2 x x p <<0.001 p <<0.001
H2 x x x p <<0.001

JF

IML-S1 p <<0.001 p = 0.816 p <<0.001 p = 0.016
H1 x p <<0.001 p <<0.001 p <<0.001
IMLS-2 x x p <<0.001 p = 0.330
H2 x x x p <<0.001

MR

IML-S1 p <<0.001 p <<0.001 p <<0.001 p = 0.027
H1 x p <<0.001 p <<0.001 p <<0.001
IMLS-2 x x p <<0.001 p = 0.581
H2 x x x p <<0.001

DP

IML-S1 p <<0.001 p = 0.015 p <<0.001 p <<0.001
H1 x p <<0.001 p <<0.001 p <<0.001
IMLS-2 x x p <<0.001 p = 0.906
H2 x x x p <<0.001

JW

IML-S1 p <<0.001 p = 0.529 p <<0.001 p = 0.070
H1 x p <<0.001 p <<0.001 p <<0.001
IMLS-2 x x p <<0.001 p = 0.776
H2 x x x p <<0.001

GB

IML-S1 p <<0.001 p = 0.331 p <<0.001 p <<0.001
H1 x p <<0.001 p <<0.001 p <<0.001
IMLS-2 x x p <<0.001 p = 0.246
H2 x x x p <<0.001

PT

IML-S1 p <<0.001 p = 0.032 p <<0.001 p = 0.001
H1 x p <<0.001 p <<0.001 p <<0.001
IMLS-2 x x p <<0.001 p = 0.107
H2 x x x p <<0.001

Table D.1: Fisher’s exact test results comparing robot behaviour across conditions, within-
participant according to the session data listed in Table 5.5. Non-significant results (representing
the minority) are highlighted in bold.
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H1 Fischer’s Test FB DB JF MR DP JW GB PT
LB p <<0.001 p <<0.001 p <<0.001 p = 0.363 p <<0.001 p = 0.473 p = 0.261 p = 0.002
FB x p <<0.001 p <<0.001 p = 0.007 p = 0.007 p = 0.003 p = 0.052 p <<0.001
DB x x p <<0.001 p <<0.001 p <<0.001 p <<0.001 p <<0.001 p = 0.095
JF x x x p <<0.001 p <<0.001 p <<0.001 p <<0.001 p <<0.001
MR x x x x p <<0.001 p = 0.185 p = 0.052 p <<0.001
DP x x x x x p <<0.001 p <<0.001 p = 0.025
JW x x x x x x p = 0.576 p <<0.001
GB x x x x x x x p <<0.001

Table D.2: Fisher’s exact test results comparing H1 robot behaviour across participants. Non-
significant results (representing the minority) are highlighted in bold.

H2 Fischer’s Test FB DB JF MR DP JW GB PT
LB p = 0.006 p = 0.300 p = 0.856 p = 1.0 p <<0.001 p <<0.001 p <<0.001 p = 0.530
FB x p = 0.196 p - 0.004 p = 0.012 p <<0.001 p <<0.001 p <<0.001 p <<0.001
DB x x p = 0.466 p = 0.279 p <<0.001 p <<0.001 p <<0.001 p = 0.018
JF x x x p = 0.755 p <<0.001 p <<0.001 p <<0.001 p = 0.130
MR x x x x p <<0.001 p <<0.001 p <<0.001 p = 0.749
DP x x x x x p <<0.001 p = 1.0 p <<0.001
JW x x x x x x p <<0.001 p <<0.001
GB x x x x x x x p <<0.001

Table D.3: Fisher’s exact test results comparing H2 robot behaviour across participants. Non-
significant results (representing the minority) are highlighted in bold.
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Session Fitness Instructor Notes
LB 3 Warm up still a little quiet.

LB 5
Very good suggestions. Pepper’s suggestions might not be what *I* would say
in that exact same situation, however it doesn’t mean that what was said or
suggested was ’wrong’

FB 1
Suggesting challenge/praise actions a little too often which could be repetitive,
however as a whole made great decisions. Impressed.

FB 3
Lots of praise. Not too much interaction between FB and Pepper. Some repetitive
speech. As a whole, great session FB worked hard and Pepper made some
good action choices.

DB 2 Good warm up behaviour. Slightly repetitive. No sass.
DB 4 Fairly good suggestions but could be more challenging.

JF 2
Hmm not so good. Very repetitve speech. Hard-coded responses. More variation
needed.

JF 4 Over-using sympathise action. Too much repetition (don’t think client realised).
MR 1 Great session.
MR 3 Fairly good speech choice, sympathetic and praise.
DP 2 Pepper did not suggest action styles although actions spoken were very good.
DP 4 Far too much maintenance speech. Conversation not flowing so well.

JW 2
Not too much interaction w/ Pepper. Didn’t need too much speech but
occasionally repetitive speech.

JW 4
A ’standard’ training session - averagely good, no complaints. Pepper made good
varied speech. JW could have been challenged more.

GB 1
Very good [H] suggestions - same action suggestion at the same time as me!
Sometimes repetitive speech. As a whole, good session.

GB 3 Pepper = ok suggestions. Maintenance = a little repetitive.
PT 1 Quiet on warm up, not much variation.
PT 3 Average/ok speech choices. Could be more engaging.

Table D.4: Fitness instructor notes taken during a subset of heuristic sessions from Phase 1
testing as per Table 5.5.

258



Session Fitness Instructor Notes

LB 25

Action = ok. Speech/action choice has variation but a random mix of challenge and
sympathy... contradictory. Mainly challenging = good. Push him. A *lot* of speech,
no opportunity to zone out. Overall the [H] is doing alright/not bad. Just very
talkative that could result in repeated speech. Although happy with the check pre.
Cool down sympathy was good but needs work as it kinda breaks the immersion.

FB 24

Actions = starting actions = pretty good! Getting the client in a challenge oriented
mind-set. 5 min. in tells client to zone-out and take the mind where it needs to go
to keep that intensity. After that, I would have done less-frequent speech i.e. back
off to let the client follow those orders and zone out without distraction. [H] Pepper
is very challenging but FB can handle it. Good action/dialogue variation and check
pre. Repetitive speech starting to show (10 mins left). No speech evolution, no real/
noticeable change in behaviour over the run i.e. end of run push.

DB 21

Actions = very sympathetic. A lot of constant speech. DB not happy with speech!
Let her zone out! No escape from the repetition. Talking not helping, This is not a
good session, opposite effect, de-motivating. Walking, Pepper too off-putting to
focus. Worst session ever.

JF 25

Actions = very challenging from the start. Each [H] acts quite differently for each
client. Showing variation but not as desirable... not so good choice or timing of
certain actions/speech. [H] goes through a lot of speech, something every 30
seconds for 30 minutes can be a bit much, given the limited dialogue. Displaying
a noticeable amount of repeated seech. Not bad (ok). Cool down speech off.

MR 21

Actions = very challenging Pepper from the start - believe me Pepper, she’s
giving you serious energy and intensity! Good choice and variation of actions.
Very challenging, better than being too over-positive but not really acknowledging
the client’s effort - praise! Just still more repeated speech, no evolution. End of run
= so-so, nothing special.

DP 27

Action = 1st action = ‘slow down’ seconds in, and ‘don’t forget to pace yourself ’
- no resaon for this! Luckily DP not listening to Pepper and still increasing speed
(although more slowly/w. less confidence). Speed down only, repeated. Not
impressed for DP’s last session. DP not taking the easy option, and still talking to
Pepper. I’m not happy with [H].

JW 25

Actions = good start! Relevant choice and variation. Hard to see/predict [H]
behaviour. Very talkative! Not providing much time/opportunity for the client
to zone out. Talking so often in repetition it may be easy to zone-out Pepper i.e.
ignoring her = unvalued speech. A *lot* of repeated speech. Lacking connection.
No evolution or change in behavioural actions over the course of the run. Cool
down speech off.

GB 26 Only speed down! *NOT* quite what I’m looking for in a trainer...

PT 21
Action = good timing, very challenging. Not identifying client struggle, kept
them pushing through.

Table D.5: Fitness instructor notes taken during each participant’s session with the updated
heuristic robot in Phase 3 testing as per Table 5.5.
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How would you describe the role of the robot with regards to the exercise programme?
How does this compare to the role of the instructor (Don) and the researcher (Katie)?

LB

Pepper was a good instructor and positively motivated my runs. The role of Don
assisted this in that having him there meant I could follow the robot’s instructions
safe in the knowledge that there was some support there should anything go wrong!
Katie was informative about project throughout.

FB

The robot delivered the exercise programme, having been pre-programmed. Don
was there to observe and Katie organised the study. Don and Katie’s roles were more
fluid - giving advice/answering questions and rescheduling sessions as necessary,
whereas the robot felt quite fixed in what it could do and say as it led each run.

DB

I felt positively obliged to show up because I want Katie to have a good, meaningful
piece of work. I wanted to better myself and get back on track and I felt such a regime
could help. I really enjoyed speaking with Don but also I would defo sign up to PT s
essions with him if that were a thing (rather than Pepper, as Pepper is not for me).

JF

Pepper was really helpful in the beginning to tell me when to run and walk- later
Pepper was useful in helping me keep focus (breathing, shoulders) and to break up
the running with motivation. Don’s presence overall was also really motivating as
he was really encouraging after each run and with the overall programme. Katie
wasn’t at the sessions very often so more of a background presence in the programme.

MR
Pepper had the role of keeping time. Sometimes Pepper motivated me to give more
energy at the end of a running phase

DP

I did not see much of Katie after the first weeks. Pepper was important in getting me
to run and walk and slowly build up to running for 30 minutes. Don’s stretching
routines were essential in my commitment as a major fear was dropping out because
of a pulled muscle.

JW

The robot was vital mainly because it timed my runs and gave some occasional useful
comments. However, Don and Katie were also vital in providing encouragement and
incentive after each session. I think if it had just been Pepper and me and no other
human involved I may not have completed the programme...i.e. Pepper switches off
when the treadmill stops but my concerns/aches/pains don’t!

GB

Even being someone that likes working out how things work (and being a roboticist
as well) it was hard to say exactly what was going on behind the scenes. But, on the
face of it, it would appear that Pepper was deciding what comments to make at which
points, and Don was supervising or monitoring it in some way. Whether Don had any
sort of direct control over the robot’s comments remains unclear to me.

PT

The robot in my opinion did a great job in helping me achieve the couch to 5k
programme. It was a great gym-buddy companion that maked me wanting to go
to the session and try my best. It is quite hard to explain how I felt in writing as for
examples sometimes in the gym or in a personal training session you don’t feel like
talking and you just want to exercise in order to free your mind a bit, during those
days Pepper was ideal! However there are some other days that you need the extra
push from your personal trainer because you just want to give up, at those times I
felt that Pepper could have done more to encourage me or to give me actual
feedback that will push me to work harder. I can imagine a gym with Pepper-like
instructors next to treadmills but of course with the presence of experienced human
instructors there to take care of you in case that something goes wrong.

Table D.6: Participant descriptions of robot, fitness instructor and researcher role in the context
of delivering the couch to 5km programme.
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How would you describe the [H] and [IML] robots as exercise instructors?
What differences, if any, did you perceive between them?

LB
[H] seemed more talkative although that may just be based on today’s session
seeing her again for the first time in a while.

FB

They were both ok as exercise instructors. I prefer the interaction you get with
human exercise instructors. Both of the robots’ phrases can get quite repetitive,
however I felt I pushed myself harder (particularly with the [IML] robot) than I
would have done on my own. They definitely provided motivation to keep going
and had some knowledge too on how technically to run (I heard more phrases from
the [IML] robot due to working with her more). They seemed friendly, particularly
when saying hello and goodbye, which made it easier than expected to start forming
a relationship with them (referring to Pepper as her etc.)

DB

[H] is super annoying and I feel for all participants who interacted with that thing.
[IML] was nice and quiet and let me get on with it and tbh towards the end I ignored
what it was saying- could not even tell you if the text was the same for the past two
weeks... but when you compare it to orange- goodness gracious [IML] is amazing and
seems an amazing companian (where I am ambivalent towards my feelings for Pepper)

JF
I think the [H] robot focussed more on trying to get people to put in the most or more
effort whereas the [IML] robot was more gentle and wanted people to just try the best
they could

MR
I feel like the [H] Pepper is more wholesome and more concerned with my well being.
The [IML] Pepper pushed me harder, which I enjoyed

DP
[IML] had more to say and with less repetition per session. [H] seemed overly
cautious. I preferred [IML].

JW

I always found it difficult to distinguish any differences. However, [H] robot today
seemed to give more comments that were based around by wellbeing whereas [IML]
would give more comments on working harder. I also found that [IML] would often
make a comment that wasn’t fit for that part of the session...i.e. telling me to push
myself when walking or telling me I’m nearly finished when I’ve only just started!

GB
I would describe [IML] as motivational/instructive as it usually commented with
encouragement or occasionally running tips. From the limited experience I got of
[H], I would describe it as ultra-careful, repetitive and a bit tedious.

PT

[IML] robot made the experience more personal as it was using my name when it
was saying encouraging stuff. [H] robot felt more like a finely tunned piece of
equipment, which was giving instructions on what to do and saying stuff automatically
without taking into account what I was actually doing.

Table D.7: Participant descriptions of the IML and H robots and any differences between them.
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